数据结构和算法:图的广度优先遍历介绍

广度优先遍历基本思想

1)图的广度遍历搜索(Broad First Search)
2) 类似于一个分层搜索的过程,广度优先遍历需要使用一个对列以保持访问过的节点的顺序,以便按这个顺序来访问这些节点的邻接节点;

广度优先遍历算法步骤

1)访问初始节点v并标记节点v为已访问。
2)节点v入对列;
3)当对列非空时,继续执行,否则算法结束;
4)出对列,取得队头节点u;
5)查找节点u的第一个邻接节点w;
6)若节点u的邻接节点w不存在,则转到步骤3;否则循环执行以下三个步骤;
6.1若节点w尚未被访问,则访问节点w并标记为已访问;
6.2节点w入对列
6.3查找节点u的继w邻接节点后的下一个邻接节点w,转到步骤6;
分析图:
在这里插入图片描述

广度优先算法的代码实现

//对一个节点进行广度优先遍历的方法
    private void bfs(boolean[] isVisited,int i) {
        int u;//表示队列的头节点对应下标
        int w;//邻接节点
        //队列,记录节点访问的顺序
        LinkedList queue = new LinkedList();
        //访问节点,输出节点信息;
        System.out.println(getValueByIndex(i) + "=>");
        //标记为已访问
        isVisited[i] =true;
        //将节点加入队列
        queue.addLast(i);
        while(!queue.isEmpty()){
            //取出对垒的头节点下标
            u = (Integer)queue.removeFirst();
            //得到第一个邻接节点的下标 w
            w =getFirstNeighbor(u);
            while(w != -1){//找到
                //是否访问过
                if(!isVisited[w]){
                    System.out.println(getValueByIndex(w)+ "=>");
                    //标记已经访问
                    isVisited[w] = true;
                    //入栈
                    queue.addLast(w);

                }
                //以u为前驱点,找w后面的下一个邻接点
                w= getNextNeighbor(u,w);//体现出我们的广度优先

            }

        }

    }
    //遍历所有节点,都进行广度优先搜索
    public void bfs(){
        isVisited = new boolean[vertexList.size()];
        for (int i = 0; i < getNumOfVertex(); i++) {
            if(!isVisited[i]){
                bfs(isVisited,i);

            }

        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值