ABB机械臂和RobotStudio编程简介

本文介绍了ABB机械臂的基本概念和特性,包括其重复定位精度、防护等级等。接着,详细讲解了RobotStudio的离线编程功能,如轨迹抓取、打磨路径生成,并提到了RAPID编程语言,用于控制机械臂运动和实现各种操作。最后,列举了常见的机器人运动指令,如MOVEJ、MOVEL和MOVEC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此篇博客将主要介绍ABB机械臂、RobotStudio平台及其编程方法。

机械臂

一种能够进行编程并在自动控制下执行某些操作和 移动作业任务的机械装置。 —— 美国国家标准局(NSB)

一种用于移动各种材料、零部件、工具或专用装置 的,通过程序化的动作来执行各种任务,并具有编 程能力的多功能操作机。 ——美国机器人协会(RIA)

机械臂是具有模仿人类手臂功能并可完成各种作业的自动控制设备,这种机器人系统有多个关节连结并允许在三维空间中运动。
机械臂由机械主体、控制器、驱动和传感器组成,其中,机械主体由关节(包括转动型和滑动型)、连杆和末端执行器组成,驱动包括电机和液压等类型。给定一个轨迹,由控制器计算控制信号驱动机械臂运动,并由传感器实时检测提供反馈信号,形成闭环控制。

下图是机械臂控制系统的示例:
在这里插入图片描述
机械臂以6关节(6轴)或以上的转动关节型机械臂应用最多,它具有动作灵活,工作空间大,关节运动部位密封性好的优点,但其运动学也相对比较复杂。

ABB机械臂

ABB机械臂便是一款六轴转动关节型机械臂,如下图所示:在这里插入图片描述
ABB机械臂的主要参数:
1、重复定位精度: 0.01mm
2、防护等级 :IP30
3、重量 : 25KG
4、运动 : 轴运动工作范围与最大速度
轴1旋转 -165° ~ +165° 250°/s
轴2手臂 -110°~ +110° 250°/s
轴3手臂 -90° ~ +70° 250°/s
轴4手腕 -160° ~ +160° 320°/s
轴5弯曲 -120° ~ +120° 320°/s
轴6翻转 -400° ~ +400° 420°/s
5、性能 : TCP最大速度 6.2m/s、TCP最大加速度 28m/s2

ABB示教器

示教器是进行机器人的手动操纵、程序编写、参数配置以及监控用的手持装置,也是我们最常使用的控制装置。
在这里插入图片描述
在这里插入图片描述

RobotStudio与编程简介

RobotStudio简介与安装

RobotStudio是一款ABB公司开发的集成离线编程仿真和在线监测和机器人编程的软件具有很强大的功能。RobotStudio配合安装PowerPacs(功能包)可以实现线下离线轨迹抓取,打磨路径生成,喷涂轨迹生成,节拍计算等功能,也可以多个机器人协同工作。RobotStudio配合Smart组件可以完成很多机械动作和制作方案动画。

ABB官网提供了RobotStudio软件的下载地址:https://new.abb.com/products/robotics/robotstudio

RobotStudio使用

  1. 建立虚拟控制器
    在这里插入图片描述
  2. 建立新程序
    在这里插入图片描述
  3. 程序检查
    在这里插入图片描述
  4. 程序导入实物机器人调试
    在这里插入图片描述
  5. RobotStudio在线调试流程
    在这里插入图片描述

RAPID程序指令

RAPID程序中包括了一连串控制机器人的指令,执行这些指令可以实现相对应的操作。程序使用RAPID编程语言的特定词汇和语法编写而成。RAPID是一种英文编程语言,所包含的指令可以控制机械臂移动、设置输出、读取输入,还可以实现决策、重复其他指令、构造程序、与系统操作员交互等。
RAPID程序由程序模块(Program Module)和系统模块(System Module)组成。一般地,我们只通过新建程序模块来构建机器人的程序,而系统模块多用于系统方面的控制之用。我们可以根据不同的用途创建多个程序模块,如专门用于主控制的程序模块,用于位置计算的程序模块,用于存放数据的程序模块,这样的目的在于方便归类管理不同用途的例行程序与数据。每一个程序模块包括了程序数据、例行程序、中断程序和功能等四种对象,但不一定在一个模块都有这四种对象的存在,程序模块之间的数据、例行程序、中断程序和功能是可以相互调用的。在RAPID程序中,只存在一个main程序,并存在于任意一个程序模块中,并且是作为整个RAPID程序执行的起点。

编写RAPID程序的步骤:

  1. 新建程序
  2. 新建模块
  3. 新建例行程序
  4. 新建程序数据
  5. 编写指令
  6. 调试

一个简单的Hello world代码:

MODULE MainModule
	PROC Main()
		TPErase;
		TPWrite"Hello world!";
	ENDPROC
ENDMODULE

常用的机器人运动指令
机器人在空间中进行运动主要是四种方式,关节运动(MOVEJ),线性运动 (MOVEL),圆弧运动(MOVEC)和绝对位置运动(MOVEABSJ)。

  • MOVEJ指令是在对路径精度要求不高的情况,机器人的工具中心点TCP从一个位置移动到另一个位置,两个位置之间的路径不一定是直线。
  • MoveJ指令是在对路径精度要求不高的情况,机器人的工具中心点TCP从一个位置移动到另一个位置,两个位置之间的路径不一定是直线。
  • MoveL运动是机器人的TCP从起点到终点之间的路径始终保持为直线,一般如焊接,涂胶等应用对路径要求高的场合进行使用此指令。
  • MoveC:机器人通过中间点以圆弧移动方式运动至目标点,当前点、中间点与目标点三点决定一段圆弧,机器人运动状态可控,运动路径保持唯一,常用于机器人在工作状态移动。
### 多目标协同控制在机械中的应用与实现方法 多目标协同控制是一种复杂的控制系统设计,旨在通过协调多个机械的动作来完成特定的任务。以下是关于其实现方法的具体分析: #### 1. **分布式学习算法的应用** 为了实现多机械的协同控制,可以采用分布式学习算法[^1]。该方法允许每个机械独立运行,并通过局部信息交换实现全局协作。这种方式不仅提高了系统的灵活性,还增强了对复杂环境的适应能力。 #### 2. **路径规划与同步控制** 对于耦合同步协同控制组合同步协同控制,需要特别关注路径规划的设计[^2]。这些路径规划可以通过优化算法生成,确保各机械之间的动作一致性以及任务完成的高效性。具体来说,路径规划应考虑以下几个方面: - 避免机械之间发生碰撞。 - 确保运动轨迹平滑且满足动力学约束。 - 提供实时调整的能力以应对突发情况。 #### 3. **分布式编队控制的优势** 相比于传统的集中式编队控制方法,分布式编队控制更适用于大规模或多自由度的机械系统[^3]。它通过减少通信负载增强系统的鲁棒性,显著提升了整体性能。例如,在 MATLAB 中模拟的速度误差补偿机制展示了如何利用本地传感器数据改进控制精度。 #### 4. **视觉引导技术的作用** 引入 AI 机器视觉技术可以帮助机械实现实时动态路径规划[^4]。这种技术使得机械能够在不确定环境中自动识别目标位置并调整自身的行动策略。这对于涉及多目标操作的任务尤为重要,因为它能有效提升抓取成功率工作效率。 #### 5. **基于图论的一致性编队控制** 从理论上讲,多机器人协同编队的核心在于构建合理的网络拓扑结构并通过一致性协议维持队列形状稳定[^5]。这一概念同样适用于多机械系统——即把每台设备视为节点,借助边权重调节它们相互间的关系参数,进而形成稳定的作业阵型。 ```python import numpy as np def distributed_control(agent_positions, neighbor_info): """ A simple example of a distributed control algorithm. Parameters: agent_positions (list): Current positions of all agents. neighbor_info (dict): Information about neighbors for each agent. Returns: list: Updated velocities or forces applied to the agents. """ updated_velocities = [] for i, pos in enumerate(agent_positions): local_force = sum([np.array(pos) - np.array(neighbor_pos) for j, neighbor_pos in neighbor_info[i]]) updated_velocities.append(-local_force * 0.1) return updated_velocities ``` 上述代码片段展示了一个简化版的分布式控制逻辑框架,其中 `agent_positions` 表示当前所有代理的位置列表,而 `neighbor_info` 则记录了每个代理周围的邻居状态信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Player

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值