1. 引言
“哈哈镜”是一种典型的图像变形效果,通过局部镜面反射产生扭曲的视觉趣味。在计算机视觉和图像处理领域,这类效果不仅有趣,还能用于艺术创作、交互装置、视觉特效等场景。
传统的“哈哈镜”往往是针对整张图像做某种镜像或扭曲变换,而如果我们将图像划分为多个小镜片,每个镜片独立做镜面反射,拼成一面“镜子墙”,效果更丰富,也更具创意。
本文将介绍如何使用 Python 和 OpenCV 实现这样一种“随机镜面墙”效果:
-
在图像上随机生成多个点,利用三角剖分将图像切成多个小三角形面片(镜片)。
-
对每个镜片分别以其重心为中心做局部镜面反射变换。
-
最后将所有变换后的镜片无缝拼接,形成一幅由多个镜面组成的“哈哈镜”墙。
2. 基础准备:OpenCV 简介
OpenCV 是一个开源的计算机视觉库,提供了丰富的图像处理功能,如图像读取、变换、绘制等。
本案例中,主要用到的功能包括:
-
cv2.fillConvexPoly
:绘制多边形掩码 -
cv2.boundingRect
:获取多边形的最小外接矩形 -
cv2.warpAffine
:仿射变换实现局部镜像 -
NumPy 进行数组和坐标操作
3. 设计思路
3.1 随机采样点 + 边界点
在图像区域内随机采样若干点(50~100个),并额外加入图像四个角点,确保后续切割覆盖整幅图。
3.2 Delaunay 三角剖分密铺
使用 SciPy 的 Delaunay
对采样点做三角剖分,得到一组不重叠的三角形面片,组成密铺。
3.3 计算三角形重心
对每个三角形顶点坐标求均值,得到重心作为局部镜面的“反射中心”。
3.4 局部镜面反射变换
以三角形重心为中心,利用仿射变换矩阵实现水平或垂直镜像(或旋转+镜像)。
-
例如水平镜像矩阵为:
M=[−102cx010]M = \begin{bmatrix} -1 & 0 & 2c_x \\ 0 & 1 & 0 \end{bmatrix}M=[−10012cx0]
其中 cxc_xcx 是重心的水平坐标(相对于当前ROI局部坐标)。
3.5 裁剪与拼接
-
对每个三角形计算外接矩形,裁剪图像和掩码。
-
将镜像变换后的结果放回对应位置,只覆盖三角形区域。
4. 关键代码示例
import cv2
import numpy as np
from scipy.spatial import Delaunay
class FrameObject:
def __init__(self):
pass
def do(self, frame, device):
h, w = frame.shape[:2]
# 生成随机点 + 添加四角
num_points = np.random.randint(50, 101)
points = np.random.randint(0, [w, h], size=(num_points, 2))
corners = np.array([[0,0], [w-1,0], [w-1,h-1], [0,h-1]])
points = np.vstack((points, corners))
# Delaunay 三角剖分
tri = Delaunay(points)
triangles = points[tri.simplices]
result = np.zeros_like(frame)
for tri_pts in triangles:
# 创建掩码,绘制三角形
mask = np.zeros((h, w), dtype=np.uint8)
cv2.fillConvexPoly(mask, tri_pts, 255)
# 计算重心
centroid = np.mean(tri_pts, axis=0)
# 裁剪ROI区域
x, y, bw, bh = cv2.boundingRect(tri_pts)
roi = frame[y:y+bh, x:x+bw]
mask_roi = mask[y:y+bh, x:x+bw]
# 转换重心到ROI局部坐标系
cx, cy = centroid - np.array([x, y])
# 构造水平镜像仿射矩阵
M = np.array([
[-1, 0, 2*cx],
[0, 1, 0]
], dtype=np.float32)
# 对ROI做镜像变换
warped = cv2.warpAffine(roi, M, (bw, bh), flags=cv2.INTER_LINEAR)
# 利用掩码覆盖变换结果
mask_bin = (mask_roi > 0)
for c in range(frame.shape[2]):
result[y:y+bh, x:x+bw, c][mask_bin] = warped[:, :, c][mask_bin]
return result
5. 运行效果与拓展
-
运行后你会看到画面被切割成许多小三角形镜片,每个镜片都经过水平镜像,组成丰富的镜面墙效果。
-
可以将
M
变换矩阵换成垂直镜像、旋转镜像,甚至结合水波扭曲,做出更多变化。 -
采样点数越多,镜片越细密,视觉越复杂。
-
6. 总结
本文介绍了如何结合 OpenCV 和 SciPy,基于随机采样点和 Delaunay 三角剖分,将图像划分为多个小镜片,并对每个镜片独立应用镜像变换,模拟“镜子墙”哈哈镜效果。
此方法不仅简单高效,还极具扩展性。你可以基于此框架增加更多变换模式、动态动画或实时视频处理,创造更多炫酷的视觉效果。
如果你喜欢这篇教程,欢迎点赞、收藏和留言交流!
更多图像处理技术,欢迎关注我的博客。