VisionMaster十二点旋转标定不共轴抓取

本文探讨了在VisionMaster中进行固定单相机标定以实现视觉引导,通过十二点旋转标定处理不共轴抓取问题。分析了由于旋转中心与工件中心不一致导致的X、Y坐标偏差,并介绍了如何通过圆拟合确定旋转中心。通过VM的旋转计算模块,可以消除旋转误差,但当存在平移时,需借助放射变换来求解真实偏移。文章还提到了如何在VM中创建基准点进行单点抓取操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

书接上回,九点标定用的是同心轴(工件中心和机器旋转点重合),但是会出现角度变化导致X、Y的偏差。

  • 下图中央的大矩形是我们要抓的工件,实际就是PCB了,但是由于场地、机构受限,只能拍一半,就是三角形和圆那部分。此案例以识别三角行为匹配模板。

在这里插入图片描述
标定采用平移旋转标定,最后三点进行旋转,这三点一般位于第5点进行旋转不平移。当十二点标定完成后,我们使用标定转换看看坐标变化。在这里插入图片描述
可以看出最后旋转的三点坐标,x、y误差相差较大。虽然只旋转了角度,但是由于旋转中心不一样,所以会出现x、y的变化。
下图就是只旋转的变化图,可以看出,三角形中心位置发生了改变,这就是因为旋转中心和三角形的中心不一致导致的。
在这里插入图片描述

<think>好的,用户问的是相机标定中的共轴共轴怎么理解。这个问题需要先拆解一下,用户可能刚接触相机标定,或者在项目中遇到了相关的问题。首先,我得回忆一下相机标定的基本概念,然后思考共轴共轴的具体含义。 共轴,通常指的是多个光学系统的光轴重合。比如双相机系统中,如果它们的镜头光轴在同一直线上,就是共轴。这种情况下,两个相机的视野中心一致,可能用于立体视觉或者三维重建。共轴系统的优势可能在于视差较小,处理某些特定场景时更准确。但安装精度要求高,调整起来麻烦。 共轴则是光轴重合,比如普通的双目相机,左右相机并排放置,光轴平行或有夹角。这种结构更常见,因为安装相对容易,基线(两个相机之间的距离)可以调整,适合同距离的物体测量。过视差可能更大,后续的立体匹配算法需要处理更大的差异,计算量可能增加。 用户可能需要了解这两种配置的适用场景、优缺点,或者在选择相机布局时的考虑因素。比如,工业检测中可能需要高精度的共轴系统,而自动驾驶的双目摄像头可能使用共轴来获得更大的视场和深度信息。 还需要注意用户可能的背景。如果是学生,可能需要更基础的解释;如果是工程师,可能需要实际应用的对比。所以回答时要兼顾理论和应用,举例说明同情况下的选择依据。 另外,共轴可能还有其他形式,比如同轴光源,但这里应该是指相机的光轴。确保没有混淆概念。可能还需要提到标定时的同挑战,共轴系统需要更高的校准精度,共轴则要考虑基线长度和角度的影响。 总结回答的结构:先定义共轴共轴,再分别说明特点、应用场景、优缺点,最后对比总结。这样用户能清晰理解两者的区别和适用情况。</think>在相机标定中,**共轴**和**共轴**主要描述多个相机或光学系统的光轴(光学的中心轴线)是否重合。以下是它们的核心区别和应用场景: --- ### **1. 共轴(Coaxial)** - **定义**:多个相机或光学系统的光轴重合(或在同一直线上)。 **例如**:双镜头共轴系统中,两个相机的镜头光轴完全对齐,共享同一视场中心。 - **特点**: - **视差小**:光轴重合,观测同一物体时视差几乎为零。 - **高精度对齐**:适用于需要严格对准的场景(如高精度测量、显微成像)。 - **结构复杂**:需精密机械设计确保光轴重合,成本较高。 - **典型应用**: - 工业检测(如芯片、精密零件的高分辨率成像)。 - 同轴双目系统(通过分光棱镜实现双相机共轴)。 - 激光与相机共轴系统(如激光三角测量)。 --- ### **2. 共轴(Non-coaxial)** - **定义**:多个相机或光学系统的光轴重合,通常平行或成一定夹角。 **例如**:普通双目立体相机中,两个相机的光轴平行且保持一定基线距离。 - **特点**: - **存在视差**:因光轴重合,观测同一物体时存在视差,可用于深度计算。 - **灵活性高**:基线(相机间距)和角度可调,适应同场景需求。 - **标定复杂度低**:安装相对简单,但对标定算法的鲁棒性要求较高。 - **典型应用**: - 立体视觉(如自动驾驶、机器人导航中的深度感知)。 - 多视角三维重建(如运动捕捉、三维扫描)。 - 普通双目/多目相机系统(如消费级VR设备)。 --- ### **对比总结** | **特性** | **共轴** | **共轴** | |----------------|-----------------------------|-------------------------------| | **光轴关系** | 重合 | 平行或成一定角度 | | **视差** | 极小或无 | 明显,用于深度计算 | | **标定难度** | 机械安装精度要求高 | 依赖算法补偿光轴偏移 | | **适用场景** | 高精度测量、显微成像 | 立体视觉、三维重建 | | **成本** | 较高(精密结构) | 较低(结构简单) | --- ### **选择依据** - 若需**高精度、低视差**(如微小物体测量),选**共轴**。 - 若需**灵活部署、深度感知**(如机器人避障),选**共轴**。 实际应用中,需根据场景需求权衡光轴配置,并通过标定算法(如张正友法)优化参数,确保成像和测量精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值