定义
给出两个 metric spaces
(
X
,
d
X
)
(X,d_X)
(X,dX) 和
(
Y
,
d
Y
)
(Y,d_Y)
(Y,dY),其中
d
X
d_X
dX代表
X
X
X 的 metric,
d
Y
d_Y
dY 代表
Y
Y
Y 的 metric,如果存在一个实数
K
≥
0
K\ge0
K≥0,对于
X
X
X 所有的
x
1
x_1
x1 和
x
2
x_2
x2
d
Y
(
f
(
x
1
)
,
f
(
x
2
)
)
≤
K
d
X
(
x
1
,
x
2
)
d_Y(f(x_1),f(x_2))\le Kd_X(x_1,x_2)
dY(f(x1),f(x2))≤KdX(x1,x2)
那么被称为利普希茨连续的函数 f : X → Y f:X\rightarrow Y f:X→Y
任何这样的 K K K 被称为函数 f f f 的利普希茨常数(Lipschitz constant)
Lipschitz连续,要求函数图像的曲线上任意两点连线的斜率一致有界,就是任意的斜率都小于同一个常数,这个常数就是Lipschitz常数。
即,Lipschitz连续比一致连续要强。它限制了函数的局部变动幅度不能超过某常量。
- 从局部看:我们可以取两个充分接近的点,如果这个时候斜率的极限存在的话,这个斜率的极限就是这个点的导数。也就是说函数可导,又是Lipschitz连续,那么导数有界。反过来,如果可导函数,导数有界,可以推出函数Lipschitz连续。
- 从整体看:Lipschitz连续要求函数在无限的区间上不能有超过线性的增长,所以这些函数在无限区间上不是Lipschitz连续的。
特别地,如果存在一个正实数 K,对于所有的实数
x
1
x_1
x1 和
x
2
:
x_2:
x2:
∣
f
(
x
1
)
−
f
(
x
2
)
∣
≤
K
∣
x
1
−
x
2
∣
|f(x_1)-f(x_2)|\le K|x_1-x_2|
∣f(x1)−f(x2)∣≤K∣x1−x2∣
这个个实值函数 f : R → R f:R\rightarrow R f:R→R 被称为利普希茨连续
在这个 case 中,Y 是 R 上的实数,有 the standard metric, d Y ( y 1 , y 2 ) = ∣ y 1 − y 2 ∣ d_Y(y_1,y_2)=|y_1-y_2| dY(y1,y2)=∣y1−y2∣, X 是 R 的子集。