利普希茨连续(Lipschitz continuity)和利普希茨常数(Lipschitz constant)

利普希茨连续函数是一种特殊类型的连续函数,其局部变动受到常数限制。若函数f满足dY(f(x1),f(x2))≤KdX(x1,x2),则称f为Lipschitz连续,K为利普希茨常数。Lipschitz连续比一致连续更强,且限制了函数的增长速度。若函数可导且导数有界,则函数Lipschitz连续。此外,实值函数f:R→R满足|f(x1)-f(x2)|≤K|x1-x2|也是Lipschitz连续的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

给出两个 metric spaces ( X , d X ) (X,d_X) (X,dX) ( Y , d Y ) (Y,d_Y) (Y,dY),其中 d X d_X dX代表 X X X 的 metric, d Y d_Y dY 代表 Y Y Y 的 metric,如果存在一个实数 K ≥ 0 K\ge0 K0,对于 X X X 所有的 x 1 x_1 x1 x 2 x_2 x2
d Y ( f ( x 1 ) , f ( x 2 ) ) ≤ K d X ( x 1 , x 2 ) d_Y(f(x_1),f(x_2))\le Kd_X(x_1,x_2) dY(f(x1),f(x2))KdX(x1,x2)

那么被称为利普希茨连续的函数 f : X → Y f:X\rightarrow Y f:XY

任何这样的 K K K 被称为函数 f f f利普希茨常数(Lipschitz constant)

Lipschitz连续,要求函数图像的曲线上任意两点连线的斜率一致有界,就是任意的斜率都小于同一个常数,这个常数就是Lipschitz常数。

即,Lipschitz连续比一致连续要强。它限制了函数的局部变动幅度不能超过某常量。

  1. 从局部看:我们可以取两个充分接近的点,如果这个时候斜率的极限存在的话,这个斜率的极限就是这个点的导数。也就是说函数可导,又是Lipschitz连续,那么导数有界。反过来,如果可导函数,导数有界,可以推出函数Lipschitz连续。
  2. 从整体看:Lipschitz连续要求函数在无限的区间上不能有超过线性的增长,所以这些函数在无限区间上不是Lipschitz连续的。

特别地,如果存在一个正实数 K,对于所有的实数 x 1 x_1 x1 x 2 : x_2: x2:
∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ K ∣ x 1 − x 2 ∣ |f(x_1)-f(x_2)|\le K|x_1-x_2| f(x1)f(x2)Kx1x2

这个个实值函数 f : R → R f:R\rightarrow R f:RR 被称为利普希茨连续

在这个 case 中,Y 是 R 上的实数,有 the standard metric, d Y ( y 1 , y 2 ) = ∣ y 1 − y 2 ∣ d_Y(y_1,y_2)=|y_1-y_2| dY(y1,y2)=y1y2, X 是 R 的子集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值