《YOLOv10改进实战专栏》专栏介绍 & 专栏目录《提供 YOLOv10-Magic 私域代码框架/本人7次贡献过YOLOv8官方项目》

《YOLOv10改进实战专栏》介绍及目录


在这里插入图片描述


YOLOv10官方仓库地址


请添加图片描述
专栏地址:点击跳转


专栏导航如下:

基础入门篇🎀

  1. 万字长文,小白新手怎么开始做YOLO实验,从零开始教!整体思路在这里,科研指南针!
  2. 基础入门篇 | YOLOv10 项目【训练】【验证】【推理】最简单教程 | YOLOv10必看 | 最新更新,直接打印 FPS,mAP50,75,95
  3. 学会 YOLOv8 直接上手 YOLOv10 | YOLOv8 YOLOv10 模型结构 Yaml 文件对比
  4. YOLOv10小白中的小白安装环境教程!没一个字废话,看一遍不踩坑!
  5. 万字长文,YOLOv10 yaml 文件解析 | 必须看!

官方项目最新更新动态及其它优化教程🍀

  1. 【关键Bug解析🤖】YOLOv10 Bug 及解决方案汇总 【环境安装】【训练 & 断点续训】【KeyError】

主干网络篇💡

  1. 使用 Timm 库替换 YOLOv10 主干网络 | 1000+ 主干融合YOLOv10

  2. 【Transformer】 | YOLOv10 更换主干网络之 MobileViT |《轻巧、通用、便于移动的视觉转换器》

  3. 【Transformer】 | YOLOv10 更换骨干网络之 SwinTransformer | 《基于位移窗口的层次化视觉变换器》

  4. YOLOv10 更换主干网络之 VanillaNet |《华为方舟实验室最新成果》

  5. YOLOv10 更换主干网络之 HGNetV2 | 《百度超强特征主干》

  6. YOLOv10 更换主干网络之 MobileNeXt |《重新思考瓶颈结构以实现高效移动网络设计》

  7. YOLOv10 更换主干网络之 ConvNext | 《纯卷积结构超越 ViTs》

  8. YOLOv10 更换骨干网络之 ResNet50/ResNet101 | 原论文一比一复现

  9. 【轻量化】| YOLOv10 融合 LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!

  10. 【轻量化】| YOLOv10 更换骨干网络之 MobileNetv4 | 《号称最强轻量化网络》

  11. 【轻量化】 | 主干网络篇 | YOLOv10 更换主干网络之 StarNet | 《重写星辰⭐》

  12. 【轻量化】 | 主干网络篇 | YOLOv10 更换主干网络之 PP-LCNet | 《PP-LCNet: 一种轻量级CPU卷积神经网络》

  13. 【轻量化】 | YOLOv10 更换主干网络之 ShuffleNetv2 | 《ShuffleNet v2:高效卷积神经网络架构设计的实用指南》

  14. 【轻量化】 | YOLOv10 更换主干网络之 EfficientNet | 《EfficientNet:重新思考卷积神经网络的模型缩放》

  15. 【轻量化】 | YOLOv10 更换骨干网络之 MobileNetV3 | 《搜寻 MobileNetV3》

  16. 【轻量化】| YOLOv10 更换骨干网络之 GhostNet | 从廉价操作中获取更多特征

  17. 【轻量化】 | YOLOv10 更换主干网络之 FasterNet | 追求更高 FLOPS 的快速神经网络》


即插即用篇🚀

  1. 手把手教你 YOLOv10 添加注意力机制 | 适用于【检测/分类/分割/关键点任务】【包含20+种注意力代码及教程】🚀
  2. YOLOv10 即插即用篇 | 用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
  3. 在 C2F 模块中添加【SE】 【CBAM】【 ECA 】【CA 】注意力机制 | 附详细结构图
  4. 在 C2F 模块中添加【SimAM】 【CoTAttention】【SKAttention】【Double】注意力机制 | 附详细结构图
  5. 在 C2F 模块中添加【EffectiveSE】【GlobalContext】【GatherExcite】【MHSA】注意力机制 | 附详细结构图
  6. 在 C2F 模块中添加【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制 | 附详细结构图
  7. 在 C2F 模块中添加【ParNet】【CrissCross】【GAM】【ParallelPolarized】【Sequential】注意力机制 | 附详细结构图
  8. 即插即用篇 | YOLOv10 引入 SimAM 注意力机制 | 《SimAM: A Simple, Parameter-Free Attention Module for Convolutional》
  9. 即插即用篇 | YOLOv10 引入 Contextual Trans 注意力机制 | 《Contextual Transformer Networks for Visual Recognition》
  10. 即插即用篇 | YOLOv10 引入 SKAttention 注意力机制 | 《Selective Kernel Networks》
  11. 即插即用篇 | YOLOv10 引入 DoubleAttention 注意力机制 | 《A2-Nets: Double Attention Networks》
  12. 即插即用篇 | YOLOv10 引入 EffectiveSE 注意力机制 | 《CenterMask : Real-Time Anchor-Free Instance Segmentation》
  13. 即插即用篇 | YOLOv10 引入 GlobalContext 注意力机制 | 《GCNet: Non-local Networks Meet Squeeze-Excitation Networks》
  14. 即插即用篇 | YOLOv10 引入 GatherExcite 注意力机制 | 《Gather-Excite: Exploiting Feature Context in Convolutional》
  15. 即插即用篇 | YOLOv10 引入 MHSA 注意力机制 | 《Bottleneck Transformers for Visual Recognition》
  16. 即插即用篇 | YOLOv10 引入 Triplet 注意力机制 | 《Rotate to Attend: Convolutional Triplet Attention Module》
  17. 即插即用篇 | YOLOv10 引入 SpatialGroupEnhance 注意力机制 | 《Improving Semantic Feature Learning in Convolutional》
  18. 即插即用篇 | YOLOv10 引入 NAM 注意力机制 | 《NAM: Normalization-based Attention Module》
  19. 即插即用篇 | YOLOv10 引入 S2 注意力机制 | 《S^2-MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE FOR VISION》
  20. 即插即用篇 | YOLOv10 引入 ParNetAttention 注意力机制 | 《NON-DEEP NETWORKS》
  21. 即插即用篇 | YOLOv10 引入 轴向注意力 Axial Attention | 多维变换器中的轴向注意力🍀
  22. 即插即用篇 | YOLOv10 引入大感受野的小波卷积 | ECCV2024🍀
  23. 即插即用篇 | YOLOv10 引入并行的分块注意力 | 北京大学 2024 | 微小目标🍀
  24. 即插即用篇 | YOLOv10 引入维度互补注意力混合Transformer模块 | 2024轻量级互补注意力网络:RAMiT引领图像修复新突破🍀
  25. 即插即用篇 | YOLOv10 引入高效的直方图Transformer模块 | 2024突破天气障碍:Histoformer引领高效图像修复新路径“🍀
  26. 即插即用篇 | YOLOv10 引入组装式Transformer模块AssembleFormer | arXiv 2024🍀
  27. 即插即用篇 | YOLOv10 引入矩形自校准模块RCM | ECCV 2024🍀
  28. 即插即用篇 | DenseNet卷土重来! YOLOv10 引入全新密集连接卷积网络 | ECCV 2024🚀
  29. 即插即用篇 | YOLOv10 引入单头视觉Transformer模块 | CVPR 2024
  30. 即插即用篇 | YOLOv10 引入 MogaBlock | 多阶门控聚合网络 | ICLR 2024
  31. 即插即用篇 | YOLOv10 引入 多尺度边缘增强模块 MEEM
  32. 即插即用篇 | YOLOv10 引入 空间和通道协同注意力模块 SCSA
  33. 即插即用篇 | YOLOv10 引入 空间自适应特征调制模块 SAFM
  34. 即插即用篇 | YOLOv10 引入自调制特征聚合模块 SMFA | ECCV 2024

特征融合篇💖

  1. 特征融合篇 | YOLOv10 引入渐进特征金字塔网络 AFPN 结构
  2. 特征融合篇 | YOLOv10 引入长颈特征融合网络 Giraffe FPN
  3. YOLOv10 应用轻量级通用上采样算子CARAFE | 《特征的内容感知重组》
  4. 【2023🏅】YOLOv10 引入中心化特征金字塔 EVC 模块 | 《Centralized Feature Pyramid for Object Detection》
  5. 【轻量化】YOLOv10 应用Slim-Neck,更好的Neck设计范式 | 《Slim-Neck by GSConv:自动驾驶车辆检测器架构的更好设计范式》
  6. YOLOv10 应用全维动态卷积 |《 OMNI-DIMENSIONAL DYNAMIC CONVOLUTION》
  7. 【2023🏅】BGF-YOLO | 增强版YOLOV10 | 用于脑瘤检测的多尺度注意力特征融合
  8. 【2023🏅】YOLO-MS: 重新思考实时目标检测的多尺度表示学习
  9. 【双主干】【2024🏅】特征融合篇 | 结合内容引导注意力 DEA-Net 思想 实现双主干特征融合新方法 | IEEE TIP 2024
  10. 【2023🏅】特征融合篇 | YOLOv10 引入动态上采样模块 | 超过了其他上采样器

算法联调篇💻

  1. 【算法联调】低照度图像增强算法—传统算法篇🚀🚀
  2. 【算法联调】YOLOv10结合SCI低光照图像增强算法!让夜晚目标无处遁形🚀🚀
  3. 【算法联调】YOLOv10结合CVPR2024最新图像增强算法!让你的模型无惧风雨🚀🚀
  4. 🌈🌈🌈YOLOv10 CAM 热力图可视化 | 已适配最新版

调参篇😎

  1. 【全网首发🥇】YOLOv10超参数调优教程! 使用Ray Tune进行高效的超参数调优!
  2. 【全网首发🥇】YOLOv10实现【K折交叉验证】教程:解决数据集样本稀少和类别不平衡的难题🍀🍀🍀

损失函数篇🌈

  1. 损失函数篇 | YOLOv10 更换损失函数之 SIoU / EIoU / WIoU / Focal_xIoU 最全汇总版
  2. 【2023🏅】损失函数篇 | YOLOv10 更换损失函数之 MPDIoU
  3. 【2023🏅】损失函数篇 | YOLOv10 引入 Shape-IoU 考虑边框形状与尺度的度量
  4. 【2023🏅】损失函数篇 | YOLOv10 引入 Inner-IoU 基于辅助边框的IoU损失

YOLOv8 项目贡献者合影,猜猜哪个是我🤭,我目前有 7commits

请添加图片描述


在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值