《YOLOv10改进实战专栏》介绍及目录
专栏地址:点击跳转
专栏导航如下:
基础入门篇🎀
- 万字长文,小白新手怎么开始做YOLO实验,从零开始教!整体思路在这里,科研指南针!
- 基础入门篇 | YOLOv10 项目【训练】【验证】【推理】最简单教程 | YOLOv10必看 | 最新更新,直接打印 FPS,mAP50,75,95
- 学会 YOLOv8 直接上手 YOLOv10 | YOLOv8 YOLOv10 模型结构 Yaml 文件对比
- YOLOv10小白中的小白安装环境教程!没一个字废话,看一遍不踩坑!
- 万字长文,YOLOv10 yaml 文件解析 | 必须看!
官方项目最新更新动态及其它优化教程🍀
主干网络篇💡
-
【Transformer】 | YOLOv10 更换主干网络之 MobileViT |《轻巧、通用、便于移动的视觉转换器》
-
【Transformer】 | YOLOv10 更换骨干网络之 SwinTransformer | 《基于位移窗口的层次化视觉变换器》
-
【轻量化】| YOLOv10 融合 LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!
-
【轻量化】 | 主干网络篇 | YOLOv10 更换主干网络之 PP-LCNet | 《PP-LCNet: 一种轻量级CPU卷积神经网络》
-
【轻量化】 | YOLOv10 更换主干网络之 ShuffleNetv2 | 《ShuffleNet v2:高效卷积神经网络架构设计的实用指南》
-
【轻量化】 | YOLOv10 更换主干网络之 EfficientNet | 《EfficientNet:重新思考卷积神经网络的模型缩放》
即插即用篇🚀
- 手把手教你 YOLOv10 添加注意力机制 | 适用于【检测/分类/分割/关键点任务】【包含20+种注意力代码及教程】🚀
- YOLOv10 即插即用篇 | 用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
- 在 C2F 模块中添加【SE】 【CBAM】【 ECA 】【CA 】注意力机制 | 附详细结构图
- 在 C2F 模块中添加【SimAM】 【CoTAttention】【SKAttention】【Double】注意力机制 | 附详细结构图
- 在 C2F 模块中添加【EffectiveSE】【GlobalContext】【GatherExcite】【MHSA】注意力机制 | 附详细结构图
- 在 C2F 模块中添加【Triplet】【SpatialGroupEnhance】【NAM】【S2】注意力机制 | 附详细结构图
- 在 C2F 模块中添加【ParNet】【CrissCross】【GAM】【ParallelPolarized】【Sequential】注意力机制 | 附详细结构图
- 即插即用篇 | YOLOv10 引入 SimAM 注意力机制 | 《SimAM: A Simple, Parameter-Free Attention Module for Convolutional》
- 即插即用篇 | YOLOv10 引入 Contextual Trans 注意力机制 | 《Contextual Transformer Networks for Visual Recognition》
- 即插即用篇 | YOLOv10 引入 SKAttention 注意力机制 | 《Selective Kernel Networks》
- 即插即用篇 | YOLOv10 引入 DoubleAttention 注意力机制 | 《A2-Nets: Double Attention Networks》
- 即插即用篇 | YOLOv10 引入 EffectiveSE 注意力机制 | 《CenterMask : Real-Time Anchor-Free Instance Segmentation》
- 即插即用篇 | YOLOv10 引入 GlobalContext 注意力机制 | 《GCNet: Non-local Networks Meet Squeeze-Excitation Networks》
- 即插即用篇 | YOLOv10 引入 GatherExcite 注意力机制 | 《Gather-Excite: Exploiting Feature Context in Convolutional》
- 即插即用篇 | YOLOv10 引入 MHSA 注意力机制 | 《Bottleneck Transformers for Visual Recognition》
- 即插即用篇 | YOLOv10 引入 Triplet 注意力机制 | 《Rotate to Attend: Convolutional Triplet Attention Module》
- 即插即用篇 | YOLOv10 引入 SpatialGroupEnhance 注意力机制 | 《Improving Semantic Feature Learning in Convolutional》
- 即插即用篇 | YOLOv10 引入 NAM 注意力机制 | 《NAM: Normalization-based Attention Module》
- 即插即用篇 | YOLOv10 引入 S2 注意力机制 | 《S^2-MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE FOR VISION》
- 即插即用篇 | YOLOv10 引入 ParNetAttention 注意力机制 | 《NON-DEEP NETWORKS》
- 即插即用篇 | YOLOv10 引入 轴向注意力 Axial Attention | 多维变换器中的轴向注意力🍀
- 即插即用篇 | YOLOv10 引入大感受野的小波卷积 | ECCV2024🍀
- 即插即用篇 | YOLOv10 引入并行的分块注意力 | 北京大学 2024 | 微小目标🍀
- 即插即用篇 | YOLOv10 引入维度互补注意力混合Transformer模块 | 2024轻量级互补注意力网络:RAMiT引领图像修复新突破🍀
- 即插即用篇 | YOLOv10 引入高效的直方图Transformer模块 | 2024突破天气障碍:Histoformer引领高效图像修复新路径“🍀
- 即插即用篇 | YOLOv10 引入组装式Transformer模块AssembleFormer | arXiv 2024🍀
- 即插即用篇 | YOLOv10 引入矩形自校准模块RCM | ECCV 2024🍀
- 即插即用篇 | DenseNet卷土重来! YOLOv10 引入全新密集连接卷积网络 | ECCV 2024🚀
- 即插即用篇 | YOLOv10 引入单头视觉Transformer模块 | CVPR 2024
- 即插即用篇 | YOLOv10 引入 MogaBlock | 多阶门控聚合网络 | ICLR 2024
- 即插即用篇 | YOLOv10 引入 多尺度边缘增强模块 MEEM
- 即插即用篇 | YOLOv10 引入 空间和通道协同注意力模块 SCSA
- 即插即用篇 | YOLOv10 引入 空间自适应特征调制模块 SAFM
- 即插即用篇 | YOLOv10 引入自调制特征聚合模块 SMFA | ECCV 2024
特征融合篇💖
- 特征融合篇 | YOLOv10 引入渐进特征金字塔网络 AFPN 结构
- 特征融合篇 | YOLOv10 引入长颈特征融合网络 Giraffe FPN
- YOLOv10 应用轻量级通用上采样算子CARAFE | 《特征的内容感知重组》
- 【2023🏅】YOLOv10 引入中心化特征金字塔 EVC 模块 | 《Centralized Feature Pyramid for Object Detection》
- 【轻量化】YOLOv10 应用Slim-Neck,更好的Neck设计范式 | 《Slim-Neck by GSConv:自动驾驶车辆检测器架构的更好设计范式》
- YOLOv10 应用全维动态卷积 |《 OMNI-DIMENSIONAL DYNAMIC CONVOLUTION》
- 【2023🏅】BGF-YOLO | 增强版YOLOV10 | 用于脑瘤检测的多尺度注意力特征融合
- 【2023🏅】YOLO-MS: 重新思考实时目标检测的多尺度表示学习
- 【双主干】【2024🏅】特征融合篇 | 结合内容引导注意力 DEA-Net 思想 实现双主干特征融合新方法 | IEEE TIP 2024
- 【2023🏅】特征融合篇 | YOLOv10 引入动态上采样模块 | 超过了其他上采样器
算法联调篇💻
- 【算法联调】低照度图像增强算法—传统算法篇🚀🚀
- 【算法联调】YOLOv10结合SCI低光照图像增强算法!让夜晚目标无处遁形🚀🚀
- 【算法联调】YOLOv10结合CVPR2024最新图像增强算法!让你的模型无惧风雨🚀🚀
- 🌈🌈🌈YOLOv10 CAM 热力图可视化 | 已适配最新版
调参篇😎
损失函数篇🌈
- 损失函数篇 | YOLOv10 更换损失函数之 SIoU / EIoU / WIoU / Focal_xIoU 最全汇总版
- 【2023🏅】损失函数篇 | YOLOv10 更换损失函数之 MPDIoU
- 【2023🏅】损失函数篇 | YOLOv10 引入 Shape-IoU 考虑边框形状与尺度的度量
- 【2023🏅】损失函数篇 | YOLOv10 引入 Inner-IoU 基于辅助边框的IoU损失
YOLOv8
项目贡献者合影,猜猜哪个是我🤭,我目前有 7
次 commits
。