线性代数之特征值和特征向量

1. 特征值、特征向量

1.1 定义

A A A n n n阶矩阵,如果存在一个数 λ \lambda λ非零 n n n维列向量 α α α,使得

A α = λ α A\alpha=\lambda \alpha Aα=λα

成立,则称 λ \lambda λ是矩阵 A A A的一个特征值,称非零向量 α α α是矩阵 A A A属于特征值 λ \lambda λ的一个特征向量.
由定义 A α = λ α 且 α ≠ 0 A\alpha=\lambda \alpha且\alpha \ne 0 Aα=λαα=0,即 ( λ E − A ) α = 0 , a ≠ 0 (\lambda E-A)α= 0,a≠0 (λEA)α=0,a=0可见特征向量 α α α是齐次方程组 ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0的非零解.

1.2 特征多项式和特征方程

A = [ a i j ] A=[a_{ij}] A=[aij]是一个 n n n阶矩阵,则行列式
∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 a n 2 ⋯ λ − a n n ∣ |\lambda E-A|= \begin{vmatrix} \lambda-a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda-a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \vdots \\ -a_{n1} & a_{n2} & \cdots & \lambda-a_{nn} \\ \end{vmatrix} λEA=λa11a21an1a12λa22an2a1na2nλann
为矩阵 A A A特征多项式, ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0成为 A A A特征方程

1.3 求特征值,特征向量的方法:

  1. 先由 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0求矩阵A的特征值 λ i \lambda_i λi(共 n n n个).再由 ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0求基础解系,即矩阵 A A A属于特征值 λ i \lambda_i λi的线性无关的特征向量.
  2. 用定义 A α = λ α A\alpha=\lambda \alpha Aα=λα推理分析.

1.4 定理

定理
定理如果 α 1 , α 2 , ⋯   , α i \alpha_1,\alpha_2,\cdots,\alpha_i α1,α2,,αi都是矩阵 A A A的属于特征值 λ \lambda λ的特征向量,那么当 k 1 α 1 + k 2 α 2 + ⋯ + k i α i k_1\alpha_1+k_2\alpha_2+\cdots+k_i\alpha_i k1α1+k2α2++kiαi非零时, k 1 α 1 + k 2 α 2 + ⋯ + k i α i k_1\alpha_1+k_2\alpha_2+\cdots+k_i\alpha_i k1α1+k2α2++kiαi是矩阵 A A A的属于特征值 λ \lambda λ的特征向量

定理
如果 λ 1 , λ 2 , ⋯   , λ i \lambda_1,\lambda_2,\cdots,\lambda_i λ1,λ2,,λi是矩阵A的互不相同的特征值, α 1 , α 2 , ⋯   , α i \alpha_1,\alpha_2,\cdots,\alpha_i α1,α2,,αi分别是与之对应的特征向量,则 α 1 , α 2 , ⋯   , α i \alpha_1,\alpha_2,\cdots,\alpha_i α1,α2,,αi线性无关.

定理
A A A n n n阶矩阵, λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn是矩阵A的特征值,则

  1. ∑ λ i = ∑ a i i \sum \lambda_i=\sum a_{ii} λi=aii
  2. ∣ A ∣ = ∏ λ i |A|=\prod \lambda_i A=λi

定理
A α = λ α A\alpha=\lambda \alpha Aα=λα,则:

  1. ( A + k E ) α = ( λ + k ) α (A+kE)\alpha=(\lambda+k)\alpha (A+kE)α=(λ+k)α
  2. A 2 α = λ 2 α A^2\alpha=\lambda^2\alpha A2α=λ2α

2. 相似矩阵

定义
A , B A,B A,B都是 n n n阶矩阵,若存在可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称 B B B A A A的相似矩阵,或 A A A相似于 B B B,记成 A ~ B A~B AB.
A ~ Λ A~\Lambda AΛ,其中 Λ \Lambda Λ是对角阵,则称 A A A可相似对角化. Λ \Lambda Λ A A A的相似标准形.根据相似的定义,可知
性质

  1. A ~ A A ~ A AA,反身性.
  2. A ~ B ⇒ B ∼ A A~B\Rightarrow B \sim A ABBA,对称性.
  3. A ∼ B , B ∼ C ⇒ A ∼ C A\sim B,B \sim C \Rightarrow A \sim C AB,BCAC,传递性.

两个矩阵相似的必要条件
A ∼ B { ⇒ ( 1 ) 特 征 多 项 式 相 同 , 即 ∣ λ E − A ∣ = ∣ λ E − B ∣ ; ⇒ ( 2 ) r ( A ) = r ( B ) ; ⇒ ( 3 ) A , B 有 相 同 的 特 征 值 ; ⇒ ( 4 ) ∣ A ∣ = ∣ B ∣ = ∏ i = 1 n λ i ; ⇒ ( 5 ) ∑ λ i = ∑ a i i = ∑ b i i A \sim B \begin{cases} \Rightarrow (1)特征多项式相同,即|\lambda E-A|=|\lambda E-B|; \\ \Rightarrow (2)r(A) = r(B); \\ \Rightarrow (3)A,B有相同的特征值;\\ \Rightarrow (4)|A|=|B|=\prod_{i=1}^n \lambda_i;\\ \Rightarrow (5) \sum \lambda_i=\sum a_{ii}=\sum b_{ii}\\ \end{cases} AB(1),λEA=λEB;(2)r(A)=r(B);(3)A,B;(4)A=B=i=1nλi;(5)λi=aii=bii

由此 A ∼ B A \sim B AB可以推出
A n ∼ B n A^n \sim B^n AnBn
A + k E ∼ B + k E A+kE \sim B+kE A+kEB+kE
A 可 逆 A − 1 ∼ B − 1 A可逆 A^{-1}\sim B^{-1} AA1B1

定理 n n n阶方阵 A A A可对角化的充分必要条件 A A A n n n线性无关的特征向量.
推论 n n n阶矩阵 A A A n n n个不同的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1, \lambda_2,\cdots,\lambda_n λ1,λ2,,λn.则 A A A可相似对角化,且
A和自己的相似矩阵
定理 n n n阶矩阵 A A A可相似对角化的充分必要条件是 A A A的每个特征值中,线性无关的特征向量的个数恰好等于该特征值的重数.即
A ∼ Λ ⇒ λ i 是 A 的 n i 重 特 征 值 , 则 λ i 有 n 个 线 性 无 关 的 特 征 向 量 A\sim \Lambda \Rightarrow \lambda_i是A 的n_i重特征值,则\lambda_i有n个线性无关的特征向量 AΛλiAni,λin线
⇒ 秩 r ( λ i E − A ) = n − n i , λ i 为 n i 重 特 征 值 \Rightarrow 秩r(\lambda_iE-A) =n-n_i,\lambda_i为n_i重特征值 r(λiEA)=nni,λini

n i = n − r ( λ i E − A ) n_i=n-r(\lambda_iE-A) ni=nr(λiEA)通常用于判断矩阵是否可以相似对角化

3. 实对称矩阵

如果有 n n n阶矩阵 A A A,其矩阵的元素都为实数,且矩阵A的转置等于其本身 ( a i j = a j i ) (a_{ij}=a_{ji}) (aij=aji),( i i i, j j j为元素的脚标),则称 A A A为实对称矩阵。

定理 实对称矩阵必可相似对角化.
定理 实对称矩阵的属于不同特征值对应的特征向量相互正交.
定理 A A A n n n阶实对称矩阵,则必存在正交阵 Q Q Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ.

正交矩阵(英语:orthogonal matrix)是一个方块矩阵 Q Q Q,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵:
Q T = Q − 1 = Q T Q = Q Q T = E Q^T=Q^{-1}=Q^TQ=QQ^T=E QT=Q1=QTQ=QQT=E
同时 ∣ A ∣ = ± 1 |A|=±1 A=±1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上夏雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值