(2021CVPR)实时注意力引导的车道检测(Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection)

本文提出LaneATT,一种基于锚点的实时车道检测模型,利用注意力机制整合全局信息,尤其适用于遮挡和缺少车道标记的情况。模型采用ResNet等CNN作为backbone,结合局部和全局特征进行车道检测,具有高效率和鲁棒性。
摘要由CSDN通过智能技术生成

摘要

本文提出了LaneATT:基于的深度车道检测模型,类似于其他通用的深度对象检测器,该模型将锚用于特征池化步骤。
由于车道遵循规则模式高度相关,因此我们假设在某些情况下,全局信息对于推断其位置可能至关重要,尤其是在诸如遮挡,缺少车道标记等情况下。因此,这项工作提出了一种新颖的基于锚点的注意力机制,该机制聚集了全局信息。

引言

诸如多项式回归模型之类的某些方法也可能会遭受由长尾效应引起的数据不平衡问题,因为曲线较锐利的情况不太常见。 此外,该模型不仅必须是鲁棒的,而且必须是有效的。 在几种应用中,车道检测必须实时或更快速地执行,以节省其他系统的处理能力,这是许多模型难以应付的要求。

相关工作

只关注基于深度学习的方法。

语义分割方法

像素级别分类其前景或背景。SCNN很慢。SAD。 CurveLanes-NAS要消耗大量资源。

行级别的分类方法

把图像网格化,在每一行找到最可能的格子。但对每条车道线都要重复一次。例如:E2E-LMD、IntRA-KD。

其他方法

FastDraw。PolyLaneNet:直接输出多项式所代表的车道线。Line-CNN:基于锚的方法

可复用性

大多方法不提供源码,导致复用性差。

本文所述方法

基于锚的单阶段模型(像YOLO3或者SSD)。整体框架图如图1所示。接收RGB图像在这里插入图片描述
作为输入,输出是车道边界线。
CNN作为backbone产生特征图,然后将其池化以提取每个锚点的要素。这些特征与注意力模块生成的一组全局特征结合在一起。 通过组合局部和全局特征,模型可以更轻松地使用其他车道的信息,这在有遮挡没有可见车道标记的情况下可能是必需的。 最后,将合并的特征传递到全连接层以预测最终的输出车道。

在这里插入图片描述

车道和锚点表示

车道用2D点表示,Y坐标等距采样。在这里插入图片描述
因为Y是固定的,车道可用X坐标表示。在这里插入图片描述
每一个Xi与各自的Yi有关。
由于大多数车道不会垂直穿过整个图像,因此使用起始索引s终止索引e定义X的有效连续序列。

与Line-CNN [13]类似,我们的方法使用线而不是来执行基于锚的检测,这意味着将使用这些线作为参考来制定车道的可能提议

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值