扩散模型综述整理

扩散模型综述整理

  1. Diffusion Models: A Comprehensive Survey of Methods and Applications
    论文链接:https://arxiv.org/abs/2209.00796
    论文分类汇总链接:https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy
    文章链接:https://blog.csdn.net/weixin_36896856/article/details/126882467

  2. A Survey on Generative Diffusion Model
    文章链接:https://arxiv.org/abs/2209.02646
    论文分类汇总链接:https://github.com/chq1155/A-Survey-on-Generative-Diffusion-Model
    文章链接:https://blog.csdn.net/amusi1994/article/details/126863315

  3. Diffusion Models in Vision: A Survey
    论文链接:https://arxiv.org/abs/2209.04747
    论文分类汇总链接:https://github.com/CroitoruAlin/Diffusion-Models-in-Vision-A-Survey
    文章链接:https://blog.csdn.net/ssshyeong/article/details/127163137

  4. Efficient Diffusion Models for Vision:A Survey
    论文链接:https://arxiv.org/abs/2210.09292
    文章链接:https://blog.csdn.net/weixin_43790925/article/details/127541872

  5. Understanding Diffusion Models: A Unified Perspective
    论文链接:https://arxiv.org/abs/2208.11970
    文章链接:https://blog.csdn.net/cf2suds8x8f0v/article/details/126736753

  6. Diffusion Models for Medical Image Analysis: A Comprehensive Survey
    文章链接:https://arxiv.org/abs/2211.07804
    论文分类汇总链接:https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging
    文章链接:https://blog.csdn.net/weixin_43790925/article/details/127973658

  7. Diffusion Models for Image Restoration and Enhancement – A Comprehensive Survey
    论文链接:https://arxiv.org/abs/2308.09388
    论文分类汇总链接:https://github.com/lixinustc/Awesome-diffusion-model-for-image-processing/
    文章链接:https://blog.csdn.net/weixin_43790925/article/details/132454087

  8. Diffusion Models in NLP: A Survey
    论文链接:https://arxiv.org/abs/2303.07576
    文章链接:https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/131039307

  9. Diffusion Models for Time Series Applications: A Survey
    论文链接:https://arxiv.org/abs/2305.00624

  10. A Comprehensive Survey on Knowledge Distillation of Diffusion Models
    论文链接:https://arxiv.org/abs/2304.04262

  11. Generative Diffusion Models on Graphs: Methods and Applications
    论文链接:https://arxiv.org/abs/2302.02591

  12. Diffusion Models for Non-autoregressive Text Generation: A Survey
    论文链接:https://arxiv.org/abs/2303.06574

  13. Text-to-image Diffusion Models in Generative AI: A Survey
    论文链接:https://arxiv.org/abs/2303.07909

  14. A Survey on Audio Diffusion Models: Text To Speech Synthesis and Enhancement in Generative AI
    论文链接:https://arxiv.org/abs/2303.13336

  15. A Survey on Graph Diffusion Models: Generative AI in Science for Molecule, Protein and Material
    论文链接:https://arxiv.org/abs/2304.01565

  16. A Comprehensive Survey on Generative Diffusion Models for Structured Data
    论文链接:https://arxiv.org/abs/2306.04139

  17. On the Design Fundamentals of Diffusion Models: A Survey
    论文链接:https://arxiv.org/abs/2306.04542

### 笔灵AI的文献综述生成方法及其研究进展 #### 一、笔灵AI的研究背景与定义 笔灵AI是一种结合自然语言处理(NLP)、机器学习以及特定领域知识的技术框架,旨在通过智能化手段辅助学术写作、创意生成以及其他文本生产任务。此类技术通常依赖于大规模预训练语言模型,并进一步微调以适应具体应用场景的需求[^1]。 #### 二、文献综述生成的主要方法 对于生成关于笔灵AI或其他类似主题的文献综述,可采用两种主要策略来构建结构化的内容: 1. **基于大型语言模型(LLM)自动生成大纲** 利用先进的LLMs直接生成初步的大纲框架。这些模型能够理解复杂语义并提供连贯逻辑的支持,使得自动化创建高质量的章节划分成为可能[^3]。 2. **从已有文献提取核心观点形成提纲** 另一种方式是从已发表的相关文章中抽取重要结论作为基础素材,再由人工或者半自动的方式完成后续编辑工作。这种方法的优势在于它保留了原始作者的观点表达风格,同时减少了原创性错误的风险。 #### 三、支持工具的应用价值 为了更高效地整理海量参考资料,在实际操作过程中还可以借助一些专门设计的信息管理软件。例如,“Connected Papers”就是一个非常实用的选择,它可以清晰呈现各篇论文间的引用关系网络图谱,有助于快速定位关键节点文献并把握整体发展趋势[^2]。 #### 四、典型流程概述 以下是针对某一特定方向开展全面调研时可能会经历的一般步骤描述(注意这里并未使用任何指示顺序词语如“首先”,仅作说明用途): - 明确目标范围内的关键词汇组合; - 运用专业数据库平台执行精确查询请求; - 收集筛选符合条件的结果记录; - 组织归纳所得资料要点成体系化的叙述形式; 在此基础上编写相应部分的具体阐述文字即可构成完整的文档初稿版本。 ```python # 示例代码片段:模拟简单搜索功能实现伪代码 def search_papers(keywords, databases): results = [] for db in databases: result = query_database(db, keywords) if result is not None: results.append(result) return summarize_results(results) databases = ["Google Scholar", "IEEE Xplore", "WoS", "Arxiv"] keywords = ["扩散模型", "文本生成", "NLP", "预训练语言模型"] search_papers(keywords, databases) ``` 上述函数展示了如何根据给定关键字列表跨多个资源库获取关联材料的过程简化版示意程序。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值