钢板表面不同种类的缺陷图

钢板表面不同种类的缺陷图

19种钢板缺陷种类

1.结疤:钢板表面出现不规则的“舌状”、“鱼鳞状”或条状翘起的金属起层
在这里结疤插入图片描述
2.夹杂:钢板表面出现不规则的“舌状”、“鱼鳞状”或条状翘起的金属起层
在这里插入图片描述
3.分层:是基材内部的夹层,这种缺陷不一定出现在表面上,往往表现为单面或双面鼓泡
在这里插入图片描述
4.抓痕:钢板表面呈现的深浅不等,类似于鸡爪形状的裂纹称为爪裂
在这里插入图片描述
5.纵裂:钢板表面沿轧制方向具有一定深度和长度的裂纹称为纵裂
在这里插入图片描述
6.尾横纹:在钢板尾部与钢板轧制方向基本呈90°,呈条状或线状,具有一定的深度和长度的裂纹
在这里插入图片描述
7.裂纹:钢板表面呈现的深浅不等,方向任意
在这里插入图片描述
8.氧化铁皮压入
在这里插入图片描述
9.压痕:在钢板表面出现不同形状和大小不一的凹痕或凹坑,沿轧制方向呈等距或不规则分布
在这里插入图片描述
10.划痕:钢板表面有低于轧制面的纵、横向划沟,单个或断续地分布在钢板表面上,高温刮伤沟底有薄层氧化铁皮,冷态刮伤可见金属光泽,沟底呈灰白色
在这里插入图片描述
11.毛刺压入:在钢板表面有毛刺压入或压入脱落后的凹痕
在这里插入图片描述
12.异物压入:在钢板表面压入非钢板材料或压入脱落后的凹痕
在这里插入图片描述
13.折叠:钢板局部有折叠
在这里插入图片描述
14.表面粗糙:表面凹凸不平
在这里插入图片描述
15.网纹
在这里插入图片描述
16.麻坑
在这里插入图片描述
17.毛刺
在这里插入图片描述
18.油污
在这里插入图片描述
19.吊装缺陷
在这里插入图片描述

### 缺陷检测数据集概述 对于YOLO模型的缺陷检测任务,可以考虑以下几种公开的数据集以及自定义创建的方式: #### 1. **MVTec AD 数据集** MVTec Anomaly Detection (AD) 是一种广泛用于工业视觉检测的任务数据集。它包含了多种类型的表面材料(如金属、木材、地毯等),并提供了正常样本和异常样本的像集合[^4]。 ```python import os from PIL import Image def load_mvtect_dataset(path_to_dataset): categories = os.listdir(path_to_dataset) images = [] labels = [] for category in categories: image_files = os.listdir(os.path.join(path_to_dataset, category)) for img_file in image_files: img_path = os.path.join(path_to_dataset, category, img_file) img = Image.open(img_path).convert('RGB') images.append(img) labels.append(category) return images, labels ``` #### 2. **NEU-CLS 数据集** NEU-CLS 是另一个针对钢板表面缺陷的经典数据集。该数据集中包含六种不同类别的缺陷图片,适合用来训练像 YOLO 这样的目标检测框架[^3]。 #### 3. **KSDD 和 KSDD2 数据集** 这些数据集专注于晶圆表面划痕和其他形式损伤的识别问题。它们的特点在于背景相对单一但存在复杂的光照条件变化情况下的小目标定位挑战性较高。 #### 4. 自定义采集与标注工具推荐 如果上述现成资源无法完全满足具体应用场景需求,则可通过如下方法获取专属定制版资料库: - 使用手机摄像头或者工业相机拍摄感兴趣区域内的实物照片; - 应用LabelImg 或 Supervisely 等开源软件完成手动标记工作; --- ### 实际操作中的注意事项 当选用任何外部可用素材作为基础时,请务必注意版权归属及相关授权协议条款规定。另外还需考虑到实际部署环境可能带来的额外约束因素比如分辨率大小调整策略等方面的影响效果评估等问题[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值