一种全局搜索策略的鲸鱼优化算法

一、理论基础

1、鲸鱼优化算法

请参考这里

2、改进的鲸鱼优化算法

(1)自适应权重

受粒子群优化算法的启发,在鲸鱼的位置更新中加入一个随迭代次数变化的惯性权重 w w w。在算法搜索的前期,削弱最优鲸鱼位置对当前个体位置调整的影响,提升算法在前期的全局搜索能力。随着迭代次数的增加,逐渐提升最优鲸鱼位置的影响力,使得其他鲸鱼能够快速收敛到最优鲸鱼的位置,提升整个算法的收敛速度。根据鲸鱼优化算法中更新次数的变化,选用迭代次数 t t t构成的自适应惯性权值如下: w ( t ) = 0.2 cos ⁡ ( π 2 ⋅ ( 1 − t t max ⁡ ) ) (1) w(t)=0.2\cos(\frac\pi2\cdot(1-\frac{t}{t_{\max}}))\tag{1} w(t)=0.2cos(2π(1tmaxt))(1)惯性权值 w w w具有一种在 [ 0 , 1 ] [0,1] [0,1]之间非线性变化的属性,由于 cos ⁡ \cos cos函数在 [ 0 , π / 2 ] [0,\pi/2] [0,π/2]之间的变化特性,使得权值在算法初期较小,但变化速度稍快;在算法后期其值较大,但变化速度会减缓,这样可以充分保证算法收敛性。改进后的鲸鱼优化算法位置更新公式为: X ( t + 1 ) = { w ( t ) X ∗ ( t ) − A ⋅ ∣ C ⋅ X ∗ ( t ) − X ( t ) ∣ , p < 0.5 w ( t ) X ∗ ( t ) + D ⋅ e b l cos ⁡ ( 2 π l ) ,        p ≥ 0.5 (2) X(t+1)=\begin{dcases}w(t)X^*(t)-A\cdot|C\cdot X^*(t)-X(t)|,\quad p<0.5\\w(t)X^*(t)+D\cdot e^{bl}\cos(2\pi l),\quad\quad\quad\,\,\,\,\,\, p≥0.5\end{dcases}\tag{2} X(t+1)={w(t)X(t)ACX(t)X(t),p<0.5w(t)X(t)+Deblcos(2πl),p0.5(2) X ( t + 1 ) = w ( t ) X r a n d ( t ) − A ⋅ ∣ C ⋅ X r a n d ( t ) − X ( t ) ∣ (3) X(t+1)=w(t)X_{rand}(t)-A\cdot|C\cdot X_{rand}(t)-X(t)|\tag{3} X(t+1)=w(t)Xrand(t)ACXrand(t)X(t)(3)在引入自适应权重之后的位置更新,会根据迭代次数的增加,动态调节权重大小,使得最优鲸鱼位置 X ∗ ( t ) X^*(t) X(t)在不同时刻对鲸鱼个体的指导不同。随迭代次数的增加,鲸鱼群的会集中向最优位置方向靠近,并且此时权值较大会使鲸鱼位置移动速度加快,进而加快算法收敛速度。

(2)变螺旋位置更新

为了使鲸鱼能够开发更多样的搜索路径进行位置更新,引入变螺旋搜寻的思想,将参数 b b b设计为随迭代次数改变的变量,动态调整鲸鱼搜寻时的螺旋形状,增加鲸鱼对未知区域的探索能力,进而提升算法全局搜索能力。结合自适应权值后,新的螺旋位置更新公式如下: { X ( t + 1 ) = w ( t ) X ∗ ( t ) + b D ⋅ e l cos ⁡ ( 2 π l ) b = e 5 ⋅ cos ⁡ ( π ⋅ ( 1 − t t max ⁡ ) ) (4) \begin{dcases}X(t+1)=w(t)X^*(t)+bD\cdot e^l\cos(2\pi l)\\b=e^{5\cdot\cos(\pi\cdot(1-\frac{t}{t_{\max}}))}\end{dcases}\tag{4} {X(t+1)=w(t)X(t)+bDelcos(2πl)b=e5cos(π(1tmaxt))(4)参数 b b b是根据螺旋线的数学模型进行设计的,在原有螺旋线模型的基础上,通过引入迭代次数,动态调整螺旋形状。这样设计的参数 b b b会随着迭代次数增加,使螺旋形状从大到小的变化。在算法前期鲸鱼以较大的螺旋形状搜寻目标,鲸鱼尽可能多的去探索全局最优解,提升算法的全局最优搜寻能力;在算法后期鲸鱼以小螺旋形状搜寻目标,提升算法的寻优精度。

(3)最优邻域扰动

引入最优邻域扰动策略,将最优位置的附近随机搜索一遍,找到一个更佳的全局值,这样不仅可以提升算法的收敛速度,而且还能避免算法出现早熟。
最优位置产生随机扰动,增加其对附近空间的搜索,邻域扰动公式为: X ~ ( t ) = { X ∗ ( t ) + 0.5 ⋅ r a n d 1 ⋅ X ∗ ( t ) , r a n d 2 < 0.5 X ∗ ( t ) , r a n d 2 ≥ 0.5 (5) \widetilde X(t)=\begin{dcases}X^*(t)+0.5\cdot rand1\cdot X^*(t),\quad rand2<0.5\\X^*(t),\quad\quad \quad \quad\quad \quad \quad\quad \quad \quad rand2≥0.5\end{dcases}\tag{5} X (t)={X(t)+0.5rand1X(t),rand2<0.5X(t),rand20.5(5)其中, r a n d 1 rand1 rand1 r a n d 2 rand2 rand2 [ 0 , 1 ] [0,1] [0,1]之间均匀产生的随机数; X ~ ( t ) \widetilde X(t) X (t)为生成的新位置。
对于生成的邻域位置,采用贪婪的策略判断是否保留,公式如下: X ∗ ( t ) = { X ~ ( t ) , f ( X ~ ( t ) ) < f ( X ∗ ( t ) ) X ∗ ( t ) ,      f ( X ~ ( t ) ) ≥ f ( X ∗ ( t ) ) (6) X^*(t)=\begin{dcases}\widetilde X(t),\quad f(\widetilde X(t))<f(X^*(t))\\X^*(t),\,\,\,\,f(\widetilde X(t))≥f(X^*(t))\end{dcases}\tag{6} X(t)={X (t),f(X (t))<f(X(t))X(t),f(X (t))f(X(t))(6)其中, f ( x ) f(x) f(x)为位置 x x x的适应值。如果生成的位置比原位置好,则将其与原位置替换,使其成为全局最优;反之,最优位置保持不变。

(4)算法流程

改进的鲸鱼优化算法(GS-WOA)的伪代码如下图所示。
在这里插入图片描述

二、仿真实验与分析

使用GS-WOA算法在11个基准函数(如文献[1]中表2所示)上进行测试。维数 D i m = 200 Dim=200 Dim=200,并将其与GWO、WOA和MS-WOA[2]算法进行比较,对比4种算法的性能指标。4种算法的参数设置相同:规模 N = 30 N=30 N=30;最大迭代次数为 M a x _ i t e r = 500 Max\_iter=500 Max_iter=500,4种算法均单独测试30次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
GS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 4.8866e-69,最优值:1.7644e-83,平均值:2.4843e-70,标准差:9.1639e-70
MS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 2.4115e-07,最优值:2.7021e-08,平均值:1.0615e-07,标准差:5.9125e-08
函数:F2
GS-WOA:最差值: 1.9763e-322,最优值:0,平均值:4.9407e-324,标准差:0
WOA:最差值: 9.4718e-50,最优值:1.3744e-54,平均值:9.3357e-51,标准差:2.0127e-50
MS-WOA:最差值: 1.6305e-175,最优值:1.715e-194,平均值:5.4663e-177,标准差:0
GWO:最差值: 4.8381e-05,最优值:2.3143e-05,平均值:3.2239e-05,标准差:6.3857e-06
函数:F3
GS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 8749142.7247,最优值:1584180.3415,平均值:4881635.5254,标准差:1662105.9788
MS-WOA:最差值: 1.0482e-313,最优值:0,平均值:3.4988e-315,标准差:0
GWO:最差值: 60488.008,最优值:8281.9077,平均值:22472.299,标准差:12994.4711
函数:F4
GS-WOA:最差值: 3.9361e-302,最优值:0,平均值:1.3125e-303,标准差:0
WOA:最差值: 98.4389,最优值:8.776,平均值:86.6505,标准差:19.12
MS-WOA:最差值: 1.3588e-168,最优值:1.2077e-184,平均值:6.6552e-170,标准差:0
GWO:最差值: 37.6224,最优值:12.0223,平均值:24.5631,标准差:6.0757
函数:F5
GS-WOA:最差值: 2.1673,最优值:6.4972e-05,平均值:0.20212,标准差:0.40146
WOA:最差值: 198.0109,最优值:197.257,平均值:197.7119,标准差:0.19205
MS-WOA:最差值: 197.1466,最优值:196.9935,平均值:197.0783,标准差:0.032193
GWO:最差值: 198.3376,最优值:196.106,平均值:198.0324,标准差:0.46107
函数:F6
GS-WOA:最差值: 0.013031,最优值:9.4383e-06,平均值:0.0018134,标准差:0.0029393
WOA:最差值: 13.4771,最优值:5.1369,平均值:9.9541,标准差:2.1914
MS-WOA:最差值: 2.8305,最优值:1.2142,平均值:1.8691,标准差:0.43356
GWO:最差值: 31.6024,最优值:25.5141,平均值:28.7462,标准差:1.551
函数:F7
GS-WOA:最差值: 0.00035071,最优值:5.7564e-06,平均值:6.7374e-05,标准差:7.2759e-05
WOA:最差值: 0.021228,最优值:0.00014255,平均值:0.0046156,标准差:0.0053857
MS-WOA:最差值: 0.00037172,最优值:4.1011e-07,平均值:8.4973e-05,标准差:9.4866e-05
GWO:最差值: 0.031828,最优值:0.0093336,平均值:0.015843,标准差:0.0051883
函数:F8
GS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
MS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 61.2767,最优值:4.8054e-06,平均值:22.0695,标准差:11.4501
函数:F9
GS-WOA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:5.1514e-15,标准差:2.7041e-15
MS-WOA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
GWO:最差值: 3.4431e-05,最优值:1.4461e-05,平均值:2.2918e-05,标准差:5.6618e-06
函数:F10
GS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
WOA:最差值: 1.1102e-16,最优值:0,平均值:3.7007e-18,标准差:2.027e-17
MS-WOA:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.074333,最优值:9.9181e-09,平均值:0.0093236,标准差:0.019994
函数:F11
GS-WOA:最差值: 0.00010369,最优值:1.2848e-08,平均值:9.7455e-06,标准差:1.961e-05
WOA:最差值: 0.13837,最优值:0.025291,平均值:0.06635,标准差:0.031157
MS-WOA:最差值: 0.023165,最优值:0.0052051,平均值:0.010956,标准差:0.0041357
GWO:最差值: 0.63728,最优值:0.40361,平均值:0.52973,标准差:0.069597

结果表明,GS-WOA在求解复杂函数的最优解时,比传统WOA的求解精度高很多,与目前改进的WOA算法相比,GS-WOA能找到更好的全局最优解。

三、参考文献

[1] 刘磊, 白克强, 但志宏, 等. 一种全局搜索策略的鲸鱼优化算法[J]. 小型微型计算机系统, 2020, 41(9): 1820-1825.
[2] 何庆, 魏康园, 徐钦帅. 基于混合策略改进的鲸鱼优化算法[J]. 计算机应用研究, 2019, 36(12): 3647-3651+3665.

  • 10
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值