RELLIS-3D数据集
(略读)
paper RELLIS-3D Dataset: Data, Benchmarks and Analysis
论文地址:https://arxiv.org/abs/2011.12954
github:https://github.com/unmannedlab/RELLIS-3D
论文提供了一个野外场景的数据集,包含有激光雷达数据,摄像头数据
摘要
语义场景理解对于鲁棒和安全的自主导航至关重要,尤其是在越野环境中。三维语义分割的最新深度学习进展在很大程度上依赖于大型训练数据集,然而现有的自治数据集要么代表城市环境,要么缺乏多模式越野数据。我们用RELLIS-3D填补了这一空白,RELLIS-3D是一个在越野环境中收集的多模式数据集,包含13556个激光雷达扫描和6235个图像的注释。这些数据是在德克萨斯A&M大学的雷利斯校区收集的,对现有的算法提出了挑战,这些算法与班级不平衡和环境地形有关。此外,我们还评估了该数据集上最新的深度学习语义分割模型。实验结果表明,RELLIS-3D对城市环境中的分割算法提出了挑战。这个新的数据集提供了研究人员继续开发更先进的算法和研究新的研究方向以增强越野环境中的自主导航所需的资源。RELLIS-3D可从以下网址获得:
https://github.com/unmannedlab/RELLIS-3D
介绍 INTRODUCTION
仅依赖激光雷达和惯性导航系统(INS)的自主导航系统在越野环境中表现不佳[1]、[2]、[3]。这些系统利用几何信息,但缺乏对环境更高层次的语义理解,