[FSCE]FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding(CVPR. 2021)

在这里插入图片描述

1. Motivation

本文是基于fine-tuning based方法

  • In this work, we observe and address the essential weakness of the fine- tuning based approach – constantly mislabeling novel in- stances as confusable categories, and improve the few-shot detection performance to the new state-of-the-art (SOTA)

2. Contribution

对比学习的引入。

  • We present Few-Shot object detection via Contrastive pro- posals Encoding (FSCE), a simple yet effective fine-tune based approach for few-shot object detection

本文通过一个对比的分支来加强RoI,对比分支衡量proposal encoding之间的相似度。

  • When trans- fer the base detector to few-shot novel data, we augment the primary Region-of-Interest (RoI) head with a contrastive branch, the contrastive branch measures the similarity between object proposal encodings
  • contrastive proposal encoding (CPE) loss,

3. Methods

在这里插入图片描述

3.1 Preliminary

Rethinking the two-stage fine-tuning approach

作者指出,冻结了RPN,FPN以及ROI 特征提取的部分是不太合理的,因为这样子会使得特征只含有base classes。

虽然在TFA baseline中,不冻结RPN和ROI会造成性能的下降,但是本文指出,fine-tune ROI feature extractor 以及 box predictor效果更好

  • In baseline TFA, unfreezing RPN and RoI feature extractor leads to degraded results for novel classes.
  • We propose a stronger baseline which adapts much better to novel data with jointly fine-tuned feature extractors and box predictors

FSCE是对于TFA的改进,因此也是属于tranfer-learning based的方法。FSCE对于第二阶段的冻结层,只冻结了ROI之前的部分。将RoI feature extractor通过对比函数来监督。

  • However it is counter-intuitive that Feature Pyramid Network , RPN, especially the RoI feature extractor which contain semantic information learned from base classes only, could be transferred directly to novel classes without any form of training.

  • The backbone feature extractor is frozen during fine-tuning while the RoI feature extractor is supervised by a contrastive objective.

从图4可以得出,TFA在fine-tune阶段 rpn的positive anchor比base training少了很多。

那么作者的观点就是改善这些得分较低proposal objectness ,它们都无法通过RPN的nms操作,就被淘汰了。

除此之外,重新平衡前景proposals的比例,对于防止背景类统治fine-tuning阶段的梯度非常的关键。

  • Our insight is to rescue the low objectness positive anchors that are suppressed.
  • Besides, re-balancing the foreground proposals fraction is also critical to prevent the diffusive yet easy backgrounds from dominating the gradient descent for novel instances in fine-tuning

在这里插入图片描述

因此,作者的改进方法是解冻了RPN和RoI层,使用2个新的设定:使得RPN NMS后的proposals更多,并且使得在RoI head 部分进行loss计算采样的proposals减半,也就是在fine-tuning阶段减半的porposal只包含背景部分(即 1:1 各128个)。

  • double the maximum number of proposals kept after NMS, this brings more foreground proposals for novel instances
  • halving the number of sampled proposals in RoI head used for loss computation, as in fine-tuning stage the discarded half contains only backgrounds(standard RoI batch size is 512, and the number of foreground proposals are far less than half of it)
# default
ROI.BATCH_SIZE_PER_IMAGE = 512
# new for FSCE in configs
ROI.BATCH_SIZE_PER_IMAGE = 256

得到更强的baseline的实验如下:

其中Fine-tune FPN指的是不冻结FPN层。 refinement RPN、 ROI指的是对于2部分进行更改。总体而言相比TFA原先的backbone,提升很明显。

在这里插入图片描述

3.2. Contrastive object proposal encoding

本文在ROI的双分支结构中,引入并行的contrastive branch,由于ROI阶段会引入ReLU 非线性操作,本文认为这样子做会在0处截断,从而导致2个proposal embedding之间的特征无法被计算出来,因此改用MLP结构,得到的对比特征为128,从而是的类别相同的proposal之间的相似度越大,类别不同的proposal更有区分度(使用constrastive loss)

  • we introduce a contrastive branch to the primary RoI head, parallel to the classifica- tion and regression branches.
  • Therefore, the contrastive branch ap- plies a 1-layer multi-layer-perceptron (MLP) head with neg- ligible cost to encode the RoI feature to contrastive feature

3.3. Contrastive Proposal Encoding (CPE) Loss

在这里插入图片描述
在这里插入图片描述

  • Proposal consistency control

对于这个分支的输入是 { z i , u i , y i }

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值