论文阅记:SC^2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registratio

在这里插入图片描述

3.2.二阶空间相容性

二阶间新的改变析抽样度量的有效性,我们首先将歧义事件的概率定义为:

在这里插入图片描述


这个公式其实就是讲的是内点与外点之间的相似度大于内点与内点之间的相似度。
其中 M 是用于测量对应相似性的特定度量。 P(Z) 是事件 Z 的概率(为方便起见,我们在下一部分中使用此符号)。 M i n , o u t M_{in,out} Min,out是内点和外点之间的相似度,而 M i n , i n M_{in,in} Min,in 是两个内点之间的相似度。当 M i n , o u t > M i n , i n M_{in,out} > M_{in,in } Min,out>Min,in时,外点是内点的近邻,因此基于度量的采样往往会失败。所以这个概率越低,基于度量的采样就越稳健。我们首先介绍常用的一阶空间兼容性(SC)度量[5,36,37,46]。对应 i 和 j 之间的 SC 度量定义如下:

在这里插入图片描述

d i j d_{ij} dij:假设ij分别对应图中的AB这一对点,那么 d ( x i , x j ) d(x_i,x_j) d(xi,xj)= d 12 d_{12} d12 d ( y i , y j ) d(y_i,y_j) d(yi,yj)= d 12 ′ d_{12}' d12.
d i j d_{ij} dij就表示了这对点的一阶兼容性,因为是刚体变换,所以如果这两对点没有对应错误, d i j d_{ij} dij应当是一个很小的值(1或者后文中提到的 d t h r d_{thr} dthr
d A B = ∣ d ( x A , x B ) − d ( y A , y B ) ∣ d_{AB}=|d(x_A,x_B)-d(y_A,y_B)| dAB=dxA,xBd(yA,yB)
φ ( d i j ) φ(d_{ij}) φdij是一个单调递减的核函数,即两对点之间的 d d d越大,他们的一阶兼容性SC就越小。
其中 ( x i , y i ) (x_i, y_i) (xi,yi) ( x j , y j ) (x_j, y_j) (xj,yj)是对应 i 和 j 的匹配点。 φ(·) 是一个单调递减的核函数。 d(·,·) 是欧几里得距离。如图 1 所示,由于刚体变换的长度一致性,两个内点 d i n , i n d_{in,in } din,in的距离差应等于 0。然而,由于数据采集和点云下采样引入的噪声, d i n , i n d_{in,in } din,in并不完全等于 0,而是小于一个阈值 d t h r d_{thr} dthr。为方便起见,我们假设 d i n , i n d_{in,in } din,in d t h r d_{thr} dthr上均匀分布,得到两对内点之间距离差的概率密度函数 (probability density function PDF),如下所示:

在这里插入图片描述

公式(3)就是说假设 d i n , i n d_{in,in } din,in在0~ d t h r d_{thr} dthr上均匀分布,那么每个地方的概率密度都是 1 d t h r \frac{1}{d_{thr}} dthr1,其分布函数就是 ∫ 0 d t h r 1 d t h r d l , 0 ≤ l ≤ d t h r \int_{0}^{{d_{thr}}} \frac{1}{d_{thr}}dl,0≤l≤ d_{thr} 0dthrdthr1dl0ldthr(概率密度函数求导等于概率)
同时,由于外点是随机分布的,因此任意两个外点或者一个外点和一个内点之间是没有任何关联的。对于两个没有关联的点之间的距离差( d i n , o u t d_{in,out } din,out d o u t , o u t d_{out,out } dout,out),我们认为它们是同分布的,并且将它们的分布记为:

在这里插入图片描述

其中 d r d_r dr d i n , o u t d_{in,out } din,out d o u t , o u t d_{out,out } dout,out的范围。 3DMatch 数据集上的经验 F 函数如图 3 (a) 所示。显然, d r d_r dr 远大于 d t h r d_{thr} dthr。因此我们可以近似认为 F (l) 是 ( 0 , d t h r ) (0, d_{thr}) (0,dthr) 内的一个常数(近似认为F(l)在0到 d t h r d_{thr} dthr之间没有变化),如下所示:
在这里插入图片描述
在这里插入图片描述



图 3. (a) din,out 和 dout,out 的经验概率密度函数 (F)。 (b) 歧义概率。 SC 是空间兼容性度量。 S C 2 SC^2 SC2-N (N = 5000, 2500, 1000) 是具有 N 个对应关系的二阶空间兼容性度量。
显然, d r d_r dr远远大于 d t h r d_{thr} dthr,因此我们可以近似 F ( . ) F(.) F(.)在( 0 , d t h r ) {0,d_{thr}}) 0,dthr)间是不变的,假设值为 f 0 f_0 f0。接下来,我们计算一阶兼容性的歧义概率(即外点与内点之间的兼容性大于内点与内点之间的)。根据公式2,3,4,5可以得出:
在这里插入图片描述

以 3DMatch [63] 数据集为例。在[5]之后,我们设置 d t h r d_{thr} dthr = 10cm,那么SC测量的歧义概率约为0.1,如图3(a)所示。考虑到异常值的数量可能很大,即使在这种概率下,错误的数量也不容忽视。


接下来,我们描述所提出的二阶空间兼容性度量 ( S C 2 ∈ R N × N ) (SC^2 ∈ R^{N×N}) SC2RN×N。具体来说,我们首先构建一个硬兼容矩阵 C ( C ∈ R N × N ) C (C ∈ R^{N×N} ) C(CRN×N)

在这里插入图片描述


C 认为满足长度一致性的两个点对是兼容的(当 i = j 时, C i , j C_{i,j} Ci,j 设置为 0)。然后, S C i j 2 SC^2_{ij } SCij2统计 i 和 j 兼容时的共同兼容对应的数量,如下:
在这里插入图片描述


在这里插入图片描述


同样,我们分析了该度量的歧义概率,即 P ( S C i n , o u t 2 > S C i n , i n 2 ) P(SC^2_{in,out} > SC^2_{in,in}) P(SCin,out2>SCin,in2)。假设有 N 对对应关系,内部比率为 α。然后,我们可以证明 P ( S C i n , o u t 2 > S C i n , i n 2 ) P(SC^2_{in,out} > SC^2_{in,in}) P(SCin,out2>SCin,in2) 可以表示为(推导见补充材料):
在这里插入图片描述

其中 S(·,·) 是 Skellam 分布 [31, 33, 34]。根据 Skellam 分布的性质,随着 α 的增加, P ( S C i n , o u t 2 > S C i n , i n 2 ) P(SC^2_{in,out} > SC^2_{in,in}) P(SCin,out2>SCin,in2) 的值将很快接近 0。为了更清楚地比较所提出的 S C 2 SC^2 SC2度量和 SC 度量,我们根据公式绘制了它们的歧义概率曲线。 (6) 和 (9)。如图 3 (b) 所示,即使内点率接近 0,所提出的 S C 2 SC^2 SC2度量的歧义概率也显着低于 SC 度量。这表明使用 S C 2 SC^2 SC2度量作为抽样指导更容易获得一个无异常值的集合。当内点率达到 1% 时, S C 2 SC^2 SC2 度量的歧义概率接近于 0,保证了对低内点率数据的鲁棒采样。

所提出二阶测度有三个优点:

  • 利用二阶测度可以更好地区分内外点。假设在N_对匹配中有M_对正确匹配,内点之间的相似性应大于M-2,而外点与内点之间的相似性很小;

  • 传统的算法如RANSAC需要大量的随机采样来得到一组没有外点的集合,而利用所提出的二阶兼容性矩阵,在每个内点所对应的行中,我们可以通过寻找top-k个近邻来得到一个一致性集合。这样,只要遍历N行就可以找到M个没有外点的集合,从而大大提升采样的稳定性和效率。

  • 我们从概率的角度证明了所提出的二阶兼容性可以减少错误采样的概率。具体来说,我们定义了一个模糊事件,即外点和内点的相似性比内点之间相似性高这一事件。我们分析了一阶兼容性和所提出的二阶兼容性的模糊事件概率,可以证明所提出的度量更稳定

3.3 可靠的种子选择

如上所述,所提出的 S C 2 SC^2 SC2 度量的内部对应关系之间存在高度相似性。然后,只要我们找到一个内部对应,我们就可以通过在度量空间中找到它的 k 个最近邻居来构建一个共识集。显然,遍历所有对应关系必须找到一个内点,但这不是必须的。我们只需要挑选一些称为种子点的可靠点来加速注册过程。我们执行光谱匹配技术[37]来选择种子点。具体来说,我们首先为所有对应建立相似矩阵,并将矩阵中的值标准化为 0-1,遵循 [37]。然后,在 [5, 37] 之后,每个对应关系与前导特征向量的关联被用作该对应关系的置信度。领先的特征向量通过幂迭代算法[40]求解。为了保证种子点的均匀分布,选取半径为 R 的邻域内与局部最大置信度得分的对应关系。种子点的数量( N s N_s Ns)由整体对应数量的比例决定。

参考文献[37]:

两个特征集P、Q,P含有 n P n_P nP个特征,Q含有 n Q n_Q nQ个特征。对应映射是集合C ( i , i   ′ ) (i,i\ ') (i,i ),在C中的映射属于两个特征集的相似点,而不包含于其中的属于异常点(不相似点)。
这样的约束存在多种方式,一对多,一对一,多对一。每一对候选赋值 a = ( i , i   ′ ) a=(i,i\ ') a=(i,i )都有一个相关性分数,用于度量 i ∈ P , i   ′ ∈ Q i∈P,i\ '∈Q iPi Q的相似性。
另外,若 a = ( i , i   ′ ) a=(i,i\ ') a=(i,i ) b = ( j , j   ′ ) b=(j,j\ ') b=(j,j ),对于每一对值(a,b)都有一个相似性,用于度量分别存在于两个特征集中的 ( i , j ) (i,j) (i,j) ( i   ′ , j   ′ ) (i\ ',j\ ') (i ,j )之间的匹配程度。
a∈L、a,b∈L的相似度存储如下;
1.M(a,a)是单个值 a = ( i , i   ′ ) a=(i,i\ ') a=(i,i )的相似性,它衡量了特征 i i i i   ′ i\ ' i 的匹配程度
2.M(a,b)描述了在两个模型中, a = ( i , j ) a=(i,j) a=(i,j) b = ( i   ′ , j   ′ ) b=(i\ ',j\ ') b=(i ,j )相对应后,他们组成的几何形状之间的匹配程度。如果 a ! = b a != b a!=b(a与b之间形变差距过大)或者基于映射的约束不兼容( i = j i=j i=j i   ! =   j i\ !=\ j i != j),那么M(a,b)将被赋值为0。
我们假设 M ( a , b ) = M ( b , a ) M(a,b) = M(b,a ) M(ab)=M(ba),不失一般性。我们要求这些相似性是非负的、对称的 ( M ( a , b ) = M ( b , a ) ) (M(a,b) = M(b,a)) (M(ab)=M(ba)),并且随着匹配的质量而增加,同时不失一般性。来自L的候选分配 a = ( i , i   ′ ) a=(i,i\ ') a=(i,i )可以被视为形成无向图的节点,成对得分M(a,b)作为边上的权重,而单独得分M(a,a)作为节点上的权重。M表示这个无向加权图的亲和矩阵(亲和矩阵,也称为相似性矩阵。亲和矩阵衡量一个空间中两点的距离或者相似度。在计算机视觉任务中,亲和矩阵通常表现为一个带权重的图,它将每个像素点视为一个节点并通过一条边连接每一对像素。)。

IJKL
I’M(a,a)M(a,b)M(a,b)M(a,b)
J’M(a,b)M(a,a)M(a,b)M(a,b)
K’M(a,b)M(a,b)M(a,a)M(a,b)
L’M(a,b)M(a,b)M(a,b)M(a,a)

在这里插入图片描述
该图中的节点数(= L中的元素数)根据实际数据进行调整,这主要取决于特征描述符的区分度。如果特征是高度区别的,例如SIFT描述符,那么所有可能对 ( i , i   ′ ) (i,i\ ') (i,i )中只有一小部分被保留作为候选匹配。在这种情况下,M的大小和问题搜索空间的维度大大减少。当特征是非鉴别性的(例如2D或3D点)并且没有关于候选匹配的先验信息(例如对翻译的约束)时,所有可能的 ( i , i   ′ ) (i,i\ ') (i,i )可以被认为是候选分配。
一般而言,M是n×n稀疏对称正矩阵,其中 n = k n P n = kn_P n=knP,k是每个数据特征i ∈ P的候选匹配的平均数量。
对应问题现在简化为找到使集群间分数 S = ∑ a , b ∈ C M ( a , b ) S=\sum\limits_{a,b∈C}M(a,b) S=a,bCM(a,b)最大化的集群 C ( i , i   ′ ) C(i,i\ ') C(i,i ),从而满足映射约束。我们可以用一个指示向量 x 来表示任何集群 C,这样如果 a ∈ C,则 x(a) = 1,否则为零。我们可以将簇间总得分重写为:
S = ∑ a , b ∈ C M ( a , b ) = x T M x S=\sum\limits_{a,b∈C}M(a,b)=x^TMx S=a,bCM(a,b)=xTMx
给定映射约束,最优解 x ∗ x^∗ x是使分数最大化的二元向量:
x ∗ = a r g m a x ( x T M x ) x^∗ = argmax(x^T M x) x=argmax(xTMx)
集群间得分 x T M x x^T M x xTMx 主要取决于三个方面:集群中点对 ( i , i   ′ ) (i,i\ ') (i,i )的数量、点对的互连程度(与每个点对相邻的链接数量)以及它们的一致性程度(链接上的权重)。
文献37的内容到此为止,已经大致能知道种子点的选取方法了,后面有需要的自己去看吧。

3.4 两阶段共识集抽样

随着一些种子点的选择,我们将它们中的每一个扩展成一个共识集。我们采用两阶段选择策略来执行从粗到细的采样。在第一阶段,我们通过在 S C 2 SC^2 SC2测量空间中找到其顶部K1邻居来为每个种子选择K1对应。如前所述,模糊度概率 P ( S C i n , o u t 2 > S C i n , i n 2 ) P(SC^2_{in,out} >SC^2_{in,in}) P(SCin,out2>SCin,in2)非常小。因此,当种子是内点对应时,共识集也主要包含内点。同时, S C 2 SC^2 SC2 度量表示的相似性侧重于全局信息而不是局部一致性。因此,在 S C 2 SC^2 SC2 度量空间中选择的邻居分布更均匀,而不是聚集在一起,这有利于刚性变换的估计 [5]。采用第二阶段采样操作,进一步过滤第一阶段得到的集合中的潜在异常值。 S C 2 SC^2 SC2 矩阵是在第一阶段产生的每个集合中重建的,而不是在整个集合中重建。我们通过新构建的局部 S C 2 SC^2 SC2 矩阵选择种子的 t o p − K 2 ( K 2 < K 1 ) top-K_2 (K_2 < K_1) topK2(K2<K1) 对应关系。如图3(b)所示,由于较高的内点率确保了较低的歧义概率,因此也可以进一步修剪潜在的外点。请注意,我们只讨论了种子点内点的情况。实际上,当种子点为异常值时,也可以形成局部一致性,尤其是在对应集中存在聚合错误匹配的情况下。我们鼓励这些集合也生成假设并在最终假设选择步骤(第 3.6 节)而不是在早期阶段过滤它们。这样,我们就可以避免一些正确的假设被提前过滤掉。

3.5 局部光谱匹配

在这一步中,我们对共识集执行加权 SVD [3],以生成每个种子的刚性变换的估计。尽管之前提出的采样策略可以获得无异常值的对应集,但我们发现加权 SVD 比同等对待所有对应取得了更好的性能。这可能是因为内点仍然具有不同程度的噪声。因此,在估计刚性变换时,具有较大噪声的对应应具有较小的权重。传统的光谱匹配[37]方法分析SC矩阵为每个对应分配权重,这是受歧义问题影响的[5]。由于提出的 S C 2 SC^2 SC2 度量对歧义更稳健,我们还将 SC 矩阵替换为 S C 2 SC^2 SC2 度量。为了便于矩阵分析,我们将 SC2 度量转换为软形式( S C ~ 2 \tilde{SC}^2 SC~2),如下所示:

在这里插入图片描述

其中·是 Hadamard 积,× 是矩阵积。然后我们对 S C ~ 2 \tilde{SC}^2 SC~2进行局部谱分解以获得对应i的权重wi。最后,通过在其共识集中执行加权 SVD [20] 计算种子 k 的旋转 Rk 和平移 tk。

3.6 假设选择

在最后一步,我们选择对所有共识集产生的刚性变换的最佳估计。我们使用与 RANSAC [26] 相同的标准,即内点计数来选择最终估计。具体来说,对于第 k 个种子 R k R_k Rk t k t_k tk 的估计,我们通过预定义的误差阈值 (τ) 计算满足 R k R_k Rk t k t_k tk 约束的对应的数量,如下所示:
在这里插入图片描述

其中 [·] 是艾弗森括号。具有最高内点数的 R k R_k Rk t k t_k tk 被选为最终结果。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值