为什么梯度方向一定是函数增大的方向

全微分的定义

在这里插入图片描述
如果函数在区域D内各点处都可微分,那么称这个函数在D内可微分。

以上就是为了解释一下为啥 f ( x + Δ x , y + Δ y ) − f ( x , y ) = f x ′ f(x+\Delta x, y+\Delta y)-f(x, y)=f_{x}^{'} f(x+Δx,y+Δy)f(x,y)=fx△x + f y ′ f_{y}^{'} fy△y + ( Δ x ) 2 + ( Δ y ) 2 \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} (Δx)2+(Δy)2

方向导数与梯度

方向导数

注意:这里的α+β = 90°,即 e l = ( cos ⁡ α , sin ⁡ α ) e_{l}=(\cos \alpha, \sin \alpha) el=(cosα,sinα)
方向导数要注意:1.函数f(x,y) 2.具体的某一点(x0, y0) 3. 方向 e l 方向e_{l} 方向el
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

有了全微分的知识铺垫,很容易看懂
∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \left.\frac{\partial f}{\partial l}\right|_{\left(x_{0}, y_{0}\right)}=f_{x}\left(x_{0}, y_{0}\right) \cos \alpha+f_{y}\left(x_{0}, y_{0}\right) \cos \beta lf (x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ
又因为α+β = 90°
所以 ∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) sin ⁡ α \left.\frac{\partial f}{\partial l}\right|_{\left(x_{0}, y_{0}\right)}=f_{x}\left(x_{0}, y_{0}\right) \cos \alpha+f_{y}\left(x_{0}, y_{0}\right) \sin \alpha lf (x0,y0)=fx(x0,y0)cosα+fy(x0,y0)sinα

梯度

在这里插入图片描述
在这里插入图片描述

以上的重点是从方向导数推导到梯度,指出当方向 e i e_{i} ei与梯度gradf(x0,y0)的方向相同时,函数f(x,y)增加最快。此时函数在这个方向的方向导数达到最大值,这个最大值就是梯度gradf(x0,y0)的模。
即:函数f(x,y)在一点的梯度grad f f f是这样的一个向量,它的方向是函数在这点的方向导数取得最大值的方向,它的模就等于方向导数的最大值。

总结:
方向导数是一个标量,方向导数定义了点 (x,y) 处沿向量 v 方向变化时,对应的函数的瞬时变化率。
方向导数的表达式
∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) sin ⁡ α \left.\frac{\partial f}{\partial l}\right|_{\left(x_{0}, y_{0}\right)}=f_{x}\left(x_{0}, y_{0}\right) \cos \alpha+f_{y}\left(x_{0}, y_{0}\right) \sin \alpha lf (x0,y0)=fx(x0,y0)cosα+fy(x0,y0)sinα
A = ( f x ( x , y ) , f y ( x , y ) ) , I = ( cos ⁡ θ , sin ⁡ θ ) A=\left(f_{x}(x, y), f_{y}(x, y)\right), I=(\cos \theta, \sin \theta) A=(fx(x,y),fy(x,y)),I=(cosθ,sinθ)
∂ f ∂ l ∣ ( x 0 , y 0 ) = A ∙ I = ∣ A ∣ ∗ ∣ I ∣ cos ⁡ α \left.\frac{\partial f}{\partial l}\right|_{\left(x_{0}, y_{0}\right)}=A \bullet I=|A| *|I| \cos \alpha lf (x0,y0)=AI=AIcosα
(α为方向导数的方向与梯度方向的夹角, α∈[0, 90])
从上面的式子可以推出来,沿着梯度方向的方向导数的值是最大的(就等于梯度的模),并且大于0(因为梯度的模肯定是正数),所以当函数沿着这个方向时一定是以最快速度递增的,也就证明了梯度就是函数值增大最快的方向。

参考博客
方向导数的几何意义

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值