规划算法
菜菜的肥柴
这个作者很懒,什么都没留下…
展开
-
规划算法之informed RRT star
从RRT star到informed RRT star上篇博客中已经对RRT* 进行了介绍,可以知道RRT是一个渐进最优的基于采样的规划算法。但是RRT在提高了规划出来的路径的质量的同时,消耗的时间也大大增长。因此在保证规划出来的路径的质量的同时,缩短搜索时间是一个探索的方向,也就是想办法在同样长的时间内,得到尽可能好的规划结果。informed RRT*就是向这个方向探索的一种。根据高中数学知识可以知道,在椭圆上的点到椭圆两焦点的距离之和相同,椭圆外的点的距离到两焦点的距离之和大于椭圆上的点到两焦点的原创 2020-07-22 17:19:40 · 8242 阅读 · 7 评论 -
规划算法专栏之渐进最优快速随机搜索树(RRT star)
RRT算法是一个典型的基于采样的高效率的算法,但是上篇文章的分析中提到了,RRT的规划的结果通常不最优,这里虽然说的是通常不最优,实际上可以说是非常不优。因此在RRT的基础上,有很多改进版本,RRT_star就是针对RRT的规划结果不最优的局限性提出的。RRT*原论文RRT_star的伪代码如下,来源链接在原始RRT的基础上,RRT_star主要有两点改进:为新节点选择代价最小的父节点重布线通俗点来说,就是为新扩展出来的节点选择一个最好的爸爸,使得新节点的代价最小,然后,在一定范围内选择合适原创 2020-07-07 19:30:30 · 3723 阅读 · 1 评论 -
规划算法专栏之随机快速搜索树(RRT)
机器人的规划问题的本质,是在已知或者部分已知环境的情况下,规划一条从起点到终点的无碰撞的路径。规划算法种类有很多,比如基于图的搜索算法、人工势场法、基于采样的规划方法等。今天主要介绍的就是一种典型的基于采样的规划方法:随机快速搜索树(RRT)。RRT是一种在完全已知的环境中通过采样扩展搜索的算法,相比较于基于图的搜索算法,最主要的优点就是快,因此在多自由度机器人的规划问题中发挥着较大的作用,比如机械臂的规划算法基本都是以RRT为基础的。但同时他也有比较明显的缺点,比如通常不最优、规划的路径非常不平滑等。但原创 2020-07-04 11:03:14 · 2869 阅读 · 0 评论 -
Hybrid A star 规划及其路径平滑方法
本来想好啊后研究一下hybrid A star算法,然后自己写一写记录一下,先搜了搜发现有一些博客文章写的已经很不错了,这里就不再重复性的写一遍了。看的主要是Path Planning in Unstructured Environments: A Real-time Hybrid A Implementation for Fast and Deterministic Path Generation for the KTH Research Concept Vehicle这篇文章,毕竟先是在githu原创 2020-07-03 19:17:10 · 8359 阅读 · 1 评论