以下根据这两篇博客进行改写 https://www.cnblogs.com/itsone/p/10728560.html http://hzwer.com/2580.html
题意:有一个矩形箱子,n个木板和m个玩具,这个箱子被分成n+1个区域,问每个区域装有多少个玩具?(1<=n,m<=5000)
很显然这就是一个判断点在直线哪一侧的问题,然后二分找答案
代码如下
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define ull unsigned long long
#define ld long double
#define rep1(i,n) for(int i=1;i<=n;i++)
#define rep0(i,n) for(int i=0;i<n;i++)
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define fre freopen("in.txt","r",stdin)
using namespace std;
const ll mod=1e9+7;
const int maxn=5e3+7,INF=0x3f3f3f3f;
int n,m,ans[maxn];
struct point{
int x,y;
};
struct Segement{
point a,b;
}s[maxn];
//计算ab向量
point sub(point a,point b){
point t;
t.x=a.x-b.x;
t.y=a.y-b.y;
return t;
}
//计算叉积a×b
int cross(point a,point b){
return a.x*b.y-b.x*a.y;
}
//使用叉积判断
//p1为定点,若turn>0,p2在p3的顺时针方向
//若turn<0,p2在p3的逆时针方向
//若turn==0,p2和p3共线,可能同向可能反向
int turn(point p1,point p2,point p3){
return cross(sub(p2,p1),sub(p3,p1));
}
/*
AC第二种写法用面积判断,本质上一样
//若turn>0,p3在矢量p1p2的右侧
//若turn<0,p3在矢量p1p2的左侧
//否则在直线上
int turn(point p1,point p2,point p3){
return (p1.x-p3.x)*(p2.y-p3.y)-(p1.y-p3.y)*(p2.x-p3.x);
}
*/
void get(point x){
int l=1,r=n,t=0;
while(l<=r){
int mid=(l+r)>>1;
//abXax>0就是x在a的右侧
if(turn(s[mid].a,s[mid].b,x)>=0)
t=mid,l=mid+1;
else r=mid-1;
}
ans[t]++;
}
int main() {
// fre;
while(scanf("%d",&n)!=EOF&&n){
memset(ans,0,sizeof(ans));
int x1,x2,y1,y2,t1,t2;
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
for(int i=1;i<=n;i++){
scanf("%d%d",&t1,&t2);
s[i].a.x=t1;s[i].a.y=y1;
s[i].b.x=t2;s[i].b.y=y2;
}
for(int i=1;i<=m;i++){
point t;
scanf("%d%d",&t.x,&t.y);
get(t);
}
for(int i=0;i<=n;i++){
printf("%d: %d\n",i,ans[i]);
}
printf("\n");
}
return 0;
}