MAE 自监督算法介绍和基于 EasyCV 的复现

本文深入解析了MAE(Masked Autoencoder)自监督学习算法,介绍了其高掩码率和非对称编码解码结构。通过在计算机视觉任务中的应用,特别是基于EasyCV库的精度复现,揭示了MAE在预训练和微调过程中的优势,包括模型结构、掩码策略、编码解码器和损失函数等方面。此外,文章还提供了在EasyCV中复现MAE的教程,包括数据准备、模型预训练和微调的步骤。
摘要由CSDN通过智能技术生成

导言

自监督学习(Self-Supervised Learning)能利用大量无标注的数据进行表征学习,然后在特定下游任务上对参数进行微调。通过这样的方式,能够在较少有标注数据上取得优于有监督学习方法的精度。近年来,自监督学习受到了越来越多的关注,如Yann Lecun也在 AAAI 上讲 Self-Supervised Learning 是未来的大势所趋。在CV领域涌现了如SwAV、MOCO、DINO、MoBY等一系列工作。MAE是kaiming继MOCO之后在自监督学习领域的又一力作。首先,本文会对MAE进行解读,然后基于EasyCV库的精度复现过程及其中遇到的一些问题作出解答。

概述

MAE的做法很简单:随机mask掉图片中的一些patch,然后通过模型去重建这些丢失的区域。包括两个核心的设计:1.非对称编码-解码结构 2.用较高的掩码率(75%)。通过这两个设计MAE在预训练过程中可以取得3倍以上的训练速度和更高的精度,如ViT-Huge能够通过ImageNet-1K数据上取得87.8%的准确率。

模型拆解

MAE属于自编码器(AutoEncoder)的一种,由编码器和解码器两个部分组成。类似于常见的自编码器,MAE会先通过编码器将图片patch映射到隐空间。然后,基于解码器将隐空间上的特征变量重构成图片patch。和常见自编码器的区别是非对称的编码解码结构。这个非对称性主要体现在以下两点:

  1. 轻量化的解码器结构
  2. 在编码器阶段,仅将未被mask掉的图片patch作为输入。在解码器阶段会将编码器输出的隐变量和mask token共同作为输入去重建完成的图片。

掩码策略

首先,直接采用ViT的做法将图片分成不重叠的patch(如vit-b会将图片划分成16x16的图像块),然后通过均匀采样策略对这些patch进行采样,并丢弃未被选中的部分。MAE所采用的掩码策略有如下两个特点:

1.在算法中,使用了75%的masking ratio来丢弃图片patch。作者指出,通过high masking ratio可以有效减少输入的冗余程度,使重建任务不能够通过简单的参考邻近patch来完成。文中,也通过实验证明了这一观点。

关于Masking ratio的实验是MAE最精彩的一部分,随着mask ratio的增加,fine-tuning和linear proing的精度逐渐攀升,甚至到75%还没有下降,这一点打破了BERT(15%)、BEiT(40%)的做法,进一步将mask 预训练方式在NLP领域的成功在CV领域实现复制。

2.采用了均匀采样策略可以有效的避免potential center bias(丢弃掉的patch都靠近图片中心)。对mask策略的消去实验如下表所示。

编码器

MAE encoder采用的是ViT结构。在对图像patch进行采样后,仅保留25%未被mask的图像patch作为输入,通过linear Projection进行编码后,加上positional embedding,然后输入到一系列的Transformer blocks中。相比于Bert中用mask token来代替被mask区域的做法,MAE encoder直接舍弃掉了mask的部分,通过这种方式可以有效的减少预训练过程中需要消耗的计算资源和训练时间。

文中,作者对编码器是否保留mask token进行了消融实验,可以看出在编码器阶段舍弃mask token不会对预训练模型的表征能力造成影响,同时能够显著的加速训练进程。

解码器

MAE decoder由一连串的Transfomer block组成。和encoder不同的是,MAE decoder的输入不仅包括未被mask的图像patch经过encoder编码后的特征,还包括了被mask掉的部分。对于mask掉部分的输入,会用一个共享参数,且可学习的mask token代替作为输入。除此之外&#x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
监督深度估计是一项非常有挑战性的任务,因为它需要在没有真实深度地图的情况下从单张图像中推断出深度信息。基于语义分割的无监督深度估计算法是一种常见的方法,它通过将图像分割成不同的语义区域,然后利用这些区域之间的关系来推断深度信息。 以下是一种基于语义分割的无监督深度估计算法的设计和验证步骤: 1. 数据集准备:选择一个适当的数据集,例如KITTI、NYU Depth v2等,这些数据集通常包含RGB图像和真实深度地图。 2. 训练语义分割模型:使用上述数据集训练一个语义分割模型,例如FCN、SegNet等。 3. 生成语义分割标签:使用已经训练好的语义分割模型对数据集中的RGB图像进行语义分割,并生成对应的语义分割标签。 4. 生成深度估计标签:使用语义分割标签来生成深度估计标签,这可以通过将每个语义区域的中心点与相邻区域的中心点之间的距离作为深度值来实现。 5. 训练深度估计网络:使用生成的深度估计标签训练一个深度估计网络,例如DepthNet、DispNet等。 6. 验证深度估计性能:使用验证集中的图像对训练好的深度估计网络进行测试,并计算其深度估计性能指标,例如平均绝对误差(MAE)、均方误差(MSE)等。 7. 优化算法:根据深度估计性能指标对算法进行优化,例如调整网络结构、调整超参数等。 通过以上步骤,可以设计和验证一种基于语义分割的无监督深度估计算法。需要注意的是,该算法的性能取决于语义分割模型的准确性和深度估计网络的能力,因此需要对这两个模型进行充分的训练和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值