深层和浅层、局部与全局语义特征辨析

文章探讨了深度神经网络中不同层次的作用,浅层网络关注细节和局部信息,具有较高的空间分辨率;而深层网络则侧重于捕获语义信息和全局上下文,感受野更大,适合识别大目标。低级特征与高级特征分别对应浅层和深层的特性,体现了网络从局部到全局的理解能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一言以蔽之:较的层次通常具有较宽的感受野范围,能够捕捉全局上下文信息(语义信息),而较的层次的感受野小,通常具有较高空间分辨率特征局部信息


感受野的大小,以及语义信息和空间信息的关系如下:

浅层网络与深层网络

浅层网络更注重于细节信息

深层网络更注重于语义信息

浅层网络:一般感受野较小,能够利用更多的细粒度特征信息,而且此时特征图每个像素点对应的感受野重叠区域还很小,这就保证了网络能够捕获更多细节

深层网络:随着下采样或卷积次数增加,感受野逐渐增加,感受野之间重叠区域也不断增加,此时的像素点代表的信息是一个区域的信息,捕获的是这块区域或相邻区域之间的特征信息,相粒度较大,但语义信息丰富

何为语义信息?
语义信息是信息的表现形式之一,指能够消除事物不确定性的有一定意义的信息。放在本文,语义信息指的是图片中的某一个区域。比如狗的尾巴,空中的一只鸟,街道上的一辆车。

低级特征与高级特征

低级特征来源于浅层网络,富含空间信息空间信息的特征分辨率比较

高级特征来源于深层网络,富含语义信息语义信息的特征分辨率比较

局部信息与全局信息

局部信息来源于浅层网络,即细粒度信息,此时的感受野比较小,故浅层网络得到的特征图局部信息比较丰富,该级别的特征图分辨率比较高,单个像素的感受野比较小,可以捕捉更多小目标的信息。

全局信息来源于深层网络,此时随着网络的加深,感受野变大,故深层网络得到的特征图全局信息更加丰富,该级别的特征图分辨率比较低,单个像素的感受野比较大,可以捕获更多中、大目标的信息

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值