特征值的实部、虚部与振荡角频率对应的物理意义

1. 特征值的来源

对于线性系统,状态空间方程一般为:
x ˙ = A x \dot{\mathbf{x}}=\mathbf{A}\mathbf{x} x˙=Ax
其解为:
x ( t ) = c 1 e λ 1 t + c 2 e λ 2 t + ⋯ + c n e λ n t \mathbf{x}(t)=\mathbf{c}_1e^{\lambda_1t}+\mathbf{c}_2e^{\lambda_2t}+\dots+\mathbf{c}_ne^{\lambda_nt} x(t)=c1eλ1t+c2eλ2t++cneλnt

其中 λ i \lambda_i λi 是矩阵 A \mathbf{A} A 的特征值。

  • 如果 λ i = σ + j ω \lambda_i=\sigma+j\omega λi=σ+ 是复数,那么对应的解项为:
    e λ i t = e ( σ + j ω ) t = e σ t ⋅ e j ω t e^{\lambda_it}=e^{(\sigma+j\omega)t}=e^{\sigma t}\cdot e^{j\omega t} eλit=e(σ+)t=eσtet
  • 分解后可以看到:
    • e σ t e^{\sigma t} eσt 是一个指数衰减(或增长)的部分,控制了信号的幅值变化;
    • e j ω t = cos ⁡ ( ω t ) + j sin ⁡ ( ω t ) e^{j\omega t}=\cos(\omega t)+j\sin(\omega t) et=cos(ωt)+jsin(ωt) 是一个复数形式的振荡项,控制了信号的振荡行为。

2. 为什么虚部是角频率 ω \omega ω

由解中的 e j ω t e^{j\omega t} et,可以看出它描述了一个频率为 ω \omega ω 的旋转/振荡。因此:

  • 特征值的虚部 ω \omega ω 决定了系统中信号的振荡频率;
  • 振荡的角频率 ω \omega ω 是信号随时间变化的快慢,单位为 r a d / s \mathrm{rad/s} rad/s

3. 实部 σ \sigma σ 与虚部 ω \omega ω 的物理意义

  • 实部 σ \sigma σ:决定了振荡幅值的变化速度。如果 σ < 0 \sigma<0 σ<0,振荡会逐渐衰减;如果 σ > 0 \sigma>0 σ>0,振荡会逐渐放大。
  • 虚部 ω \omega ω:决定了振荡的频率。当 ω = 0 \omega=0 ω=0 时表示系统只存在指数衰减或增长,没有振荡; ω ≠ 0 \omega\neq 0 ω=0 时表示系统有振荡行为。

4. 特征值虚部与系统动力学的联系

在线性振荡系统(如振动、RLC电路、机械振动)中,特征值的虚部直接对应系统的振荡角频率,因为这些系统的动力学方程都可以归结为二阶微分方程:
x ¨ + 2 ζ ω n x ˙ + ω n 2 x = 0 \ddot{x}+2\zeta\omega_n\dot{x}+\omega_n^2x=0 x¨+2ζωnx˙+ωn2x=0
其特征根为:
λ = − ζ ω n ± j ω n 1 − ζ 2 \lambda=-\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2} λ=ζωn±jωn1ζ2
其中:

  • ω n \omega_n ωn 是系统的固有频率,它与特征值的虚部 ω = ω n 1 − ζ 2 \omega=\omega_n\sqrt{1-\zeta^2} ω=ωn1ζ2 一一对应;
  • ζ \zeta ζ 是系统的阻尼比,影响振荡的幅值变化速度。

总结

特征值的虚部 ω \omega ω 是振荡角频率,因为它直接决定了系统中周期振荡的快慢。通过特征值的虚部,可以分析系统的振荡特性,而通过实部,可以分析系统的稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值