1. 特征值的来源
对于线性系统,状态空间方程一般为:
x
˙
=
A
x
\dot{\mathbf{x}}=\mathbf{A}\mathbf{x}
x˙=Ax
其解为:
x
(
t
)
=
c
1
e
λ
1
t
+
c
2
e
λ
2
t
+
⋯
+
c
n
e
λ
n
t
\mathbf{x}(t)=\mathbf{c}_1e^{\lambda_1t}+\mathbf{c}_2e^{\lambda_2t}+\dots+\mathbf{c}_ne^{\lambda_nt}
x(t)=c1eλ1t+c2eλ2t+⋯+cneλnt
其中 λ i \lambda_i λi 是矩阵 A \mathbf{A} A 的特征值。
- 如果
λ
i
=
σ
+
j
ω
\lambda_i=\sigma+j\omega
λi=σ+jω 是复数,那么对应的解项为:
e λ i t = e ( σ + j ω ) t = e σ t ⋅ e j ω t e^{\lambda_it}=e^{(\sigma+j\omega)t}=e^{\sigma t}\cdot e^{j\omega t} eλit=e(σ+jω)t=eσt⋅ejωt - 分解后可以看到:
- e σ t e^{\sigma t} eσt 是一个指数衰减(或增长)的部分,控制了信号的幅值变化;
- e j ω t = cos ( ω t ) + j sin ( ω t ) e^{j\omega t}=\cos(\omega t)+j\sin(\omega t) ejωt=cos(ωt)+jsin(ωt) 是一个复数形式的振荡项,控制了信号的振荡行为。
2. 为什么虚部是角频率 ω \omega ω
由解中的 e j ω t e^{j\omega t} ejωt,可以看出它描述了一个频率为 ω \omega ω 的旋转/振荡。因此:
- 特征值的虚部 ω \omega ω 决定了系统中信号的振荡频率;
- 振荡的角频率 ω \omega ω 是信号随时间变化的快慢,单位为 r a d / s \mathrm{rad/s} rad/s。
3. 实部 σ \sigma σ 与虚部 ω \omega ω 的物理意义
- 实部 σ \sigma σ:决定了振荡幅值的变化速度。如果 σ < 0 \sigma<0 σ<0,振荡会逐渐衰减;如果 σ > 0 \sigma>0 σ>0,振荡会逐渐放大。
- 虚部 ω \omega ω:决定了振荡的频率。当 ω = 0 \omega=0 ω=0 时表示系统只存在指数衰减或增长,没有振荡; ω ≠ 0 \omega\neq 0 ω=0 时表示系统有振荡行为。
4. 特征值虚部与系统动力学的联系
在线性振荡系统(如振动、RLC电路、机械振动)中,特征值的虚部直接对应系统的振荡角频率,因为这些系统的动力学方程都可以归结为二阶微分方程:
x
¨
+
2
ζ
ω
n
x
˙
+
ω
n
2
x
=
0
\ddot{x}+2\zeta\omega_n\dot{x}+\omega_n^2x=0
x¨+2ζωnx˙+ωn2x=0
其特征根为:
λ
=
−
ζ
ω
n
±
j
ω
n
1
−
ζ
2
\lambda=-\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2}
λ=−ζωn±jωn1−ζ2
其中:
- ω n \omega_n ωn 是系统的固有频率,它与特征值的虚部 ω = ω n 1 − ζ 2 \omega=\omega_n\sqrt{1-\zeta^2} ω=ωn1−ζ2 一一对应;
- ζ \zeta ζ 是系统的阻尼比,影响振荡的幅值变化速度。
总结
特征值的虚部 ω \omega ω 是振荡角频率,因为它直接决定了系统中周期振荡的快慢。通过特征值的虚部,可以分析系统的振荡特性,而通过实部,可以分析系统的稳定性。