系统稳定性

参考文献:
谢克明,现代控制理论,清华大学出版社,2005.

系统的运动稳定性可以分为:基于输入输出描述的外部稳定性和基于状态空间描述的内部稳定性。

内部稳定性和外部稳定性的关系:
对连续时间线性定常系统

{x˙=Ax+Buy=Cx+Dux(0)=x0,t0,

若系统为内部稳定即渐近稳定,则系统必为BIBO稳定即外部稳定;系统为BIBO稳定即外部稳定不能保证系统必为内部稳定即渐近稳定。

Lyapunov稳定性:

系统的Lyapunov稳定性指的是系统在平衡状态下受到扰动时,经过“足够长”的时间以后,系统恢复到平衡状态的能力。系统的稳定性是相对于系统的平衡状态而言的。
1. 平衡状态
设系统状态方程为 x˙=f(x,t) ,若对所有t满足 x˙=0 ,则称该状态x为平衡状态,记为 xe ,下式成立

f(xe,t)=0,

满足上式中的点,称为平衡点。
1. Lyapunov稳定性
(1) Lyapunov意义下的稳定性
对于系统 x˙=f(x,t) ,若任意给定实数 ε>0 ,都存在另一个实数 δ(ε,t0)>0 ,使当 x0xeδ 时,从任意初态 x0 出发的解 Φ(t,x0,t0) 满足
Φ(t,x0,t0)xeε,tt0

则称系统的平衡状态 xe 是稳定的,其中 δ(ε,t0) 是关于 t0 有关的实数;若 δ t0 无关,则称 xe 是一致稳定的。
对于定常系统, δ t0 无关,此时稳定的平衡状态一定是一致稳定的。
(2) 渐近稳定性
对于系统 x˙=f(x,t) ,若任意给定实数 ε>0 ,都存在另一个实数 δ(ε,t0)>0 ,使当 x0xeδ 时,从任意初态 x0 出发的解 Φ(t,x0,t0) 满足
Φ(t,x0,t0)xeε,tt0

且对于实数 δ(ε,t0)>0 和任意给定的实数 μ>0 ,对应地存在实数 T(μ,δ,t0)>0 总有,
limtΦ(t,x0,t0)xeμ,tt0+T(μ,δ,t0)

则称平衡状态 xe 是渐近稳定的。
渐近稳定比稳定性有更强的性质。
(3) 大范围渐近稳定
如果系统 x˙=f(x,t) 在任意初始状态 x0 下的每一个解,当 t 时,都收敛于 xe ,那么系统的平衡状态 xe 叫大范围渐近稳定的。
(4) 不稳定性
对于系统 x˙=f(x,t) ,若任意给定实数 ε>0 和任一实数 δ>0 ,使当 x0xeδ 时,总存在一个初态 x0 ,使
Φ(t,x0,t0)xe>ε,tt0

则称平衡状态 xe 是不稳定的。

Lyapunov第一法:

  1. 线性定常系统
    线性定常系统 x˙=Ax ,渐近稳定的充要条件是系统矩阵A的特征值 λ 均具有负实部,即
    Re(λi)<0,i=1,2,,n
  2. 线性时变系统
    线性时变系统 x˙=A(t)x ,其状态解为 x(t)=Φ(t,t0)x(t0) ,根据Lyapunov稳定性定义,有:
    1) 若存在某正数 N(t0) ,对于任意 t0 tt0 ,有 Φ(t,t0)N(t0) ,则系统稳定;
    2) 若存在某正数 N(t0) ,对于任意 t0 tt0 ,有 Φ(t,t0)N ,则系统一致稳定;
    3) 若存在某正数 N(t0) ,对于任意 t0 tt0 ,有 limtΦ(t,t0)0 ,则系统渐近稳定;
    4) 若存在某常数 N>0 , C>0 ,则对于任意 t0 tt0 ,有 Φ(t,t0)NeC(tt0) ,则系统一致渐近稳定。
  3. 非线性定常系统
    非线性定常系统的自治状态方程为 x˙=f(x) f(x) 对状态向量x有连续的偏导数,在平衡状态 xe=0 处展成泰勒级数,则
    x˙=Ax+R(x)

    式中A为雅可比矩阵, R(x) 包含对x的二次及二次以上的高阶导数。
    1) 若A的特征值都具有负实部,则系统是在 的足够小领域内渐近稳定的;
    2) 若A的特征值中,至少有一个具有正的实部,则不论被忽略的高阶导数项 R(x) 如何,系统的平衡状态总是不稳定的;
    3) 若A的特征值中,至少有一个实部为0,此时原线性系统不能用线性化方程来判断其稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值