锁相环的控制框图一般为:
锁相环的闭环传递函数分析
对于锁相环的闭环传递函数:
H ( s ) = K P L L p s + K P L L i s 2 + K P L L p s + K P L L i H(s)=\frac{K_{PLLp}s+K_{PLLi}}{s^2+K_{PLLp}s+K_{PLLi}} H(s)=s2+KPLLps+KPLLiKPLLps+KPLLi
我们可以通过分析系统的特征方程(分母)来计算其带宽和阻尼比。
1. 系统特征方程
特征方程为:
s 2 + K P L L p s + K P L L i = 0 s^2+K_{PLLp}s+K_{PLLi}=0 s2+KPLLps+KPLLi=0
解这个二次方程可以得到两个极点:
s 1 , 2 = − K P L L p 2 ± ( K P L L p 2 ) 2 − K P L L i s_{1,2}=-\frac{K_{PLLp}}{2}\pm\sqrt{\left(\frac{K_{PLLp}}{2}\right)^2-K_{PLLi}} s1,2=−2KPLLp±(2KPLLp)2−KPLLi
记:
- ω n = K P L L i \omega_n=\sqrt{K_{PLLi}} ωn=KPLLi:系统的自然频率。
- ζ = K P L L p 2 ω n = K P L L p 2 K P L L i \zeta=\frac{K_{PLLp}}{2\omega_n}=\frac{K_{PLLp}}{2\sqrt{K_{PLLi}}} ζ=2ωnKPLLp=2KPLLiKPLLp:系统的阻尼比。
因此,阻尼比 ζ \zeta ζ 和自然频率 ω n \omega_n ωn 可分别表示为:
ζ = K P L L p 2 K P L L i , ω n = K P L L i \zeta=\frac{K_{PLLp}}{2\sqrt{K_{PLLi}}},\quad\omega_n=\sqrt{K_{PLLi}} ζ=2KPLLiKPLLp,ωn=KPLLi
2. 带宽计算
对于二阶系统,带宽与自然频率和阻尼比相关。近似公式为:
ω B W ≈ ω n 1 + 2 ζ 2 + 2 + 4 ζ 2 + 4 ζ 4 \omega_{BW}\approx\omega_n\sqrt{1+2\zeta^2+\sqrt{2+4\zeta^2+4\zeta^4}} ωBW≈ωn1+2ζ2+2+4ζ2+4ζ4
- 如果阻尼比较小( ζ ≪ 1 \zeta\ll1 ζ≪1),带宽接近于自然频率: ω B W ≈ ω n \omega_{BW}\approx\omega_n ωBW≈ωn。
- 如果阻尼比较大( ζ → 1 \zeta\to1 ζ→1),临界阻尼系统,带宽逐渐减小。
3. 锁相环带宽推导的详细过程
对于典型二阶系统 G P L L ( s ) = 1 U m ⋅ 2 ζ ω n s + ω n 2 s 2 + 2 ζ ω n s + ω n 2 G_{PLL}(s)=\frac{1}{U_m}\cdot\frac{2\zeta\omega_ns+\omega_n^2}{s^2 + 2\zeta\omega_ns+\omega_n^2} GPLL(s)=Um1⋅s2+2ζωns+ωn22ζωns+ωn2,其频率响应 G P L L ( j ω ) G_{PLL}(j\omega) GPLL(jω) 为:
G P L L ( j ω ) = 1 U m ⋅ ω n 2 + j 2 ζ ω n ω − ω 2 + j 2 ζ ω n ω + ω n 2 G_{PLL}(j\omega)=\frac{1}{U_m}\cdot\frac{\omega_n^2 + j2\zeta\omega_n\omega}{-\omega^2 + j2\zeta\omega_n\omega+\omega_n^2} GPLL(jω)=Um1⋅−ω2+j2ζωnω+ωn2ωn2+j2ζωnω
将 s = j ω s = j\omega s=jω 代入后化简可得:
G P L L ( j ω ) = 1 U m ⋅ ( ω n 2 ) 2 + ( 2 ζ ω n ω ) 2 ( ω n 2 − ω 2 ) 2 + ( 2 ζ ω n ω ) 2 G_{PLL}(j\omega)=\frac{1}{U_m}\cdot\frac{\sqrt{(\omega_n^2)^2+(2\zeta\omega_n\omega)^2}}{\sqrt{(\omega_n^2-\omega^2)^2+(2\zeta\omega_n\omega)^2}} GPLL(jω)=Um1⋅(ωn2−ω2)2+(2ζωnω)2(ωn2)2+(2ζωnω)2
在零频率处 ω = 0 \omega = 0 ω=0,此时 ∣ G P L L ( j 0 ) ∣ = 1 U m \vert G_{PLL}(j0)\vert=\frac{1}{U_m} ∣GPLL(j0)∣=Um1。
根据带宽的定义,带宽频率处的幅值增益应下降到比零频率处低3dB,即 ∣ G P L L ( j ω B W ) ∣ = 1 2 ⋅ 1 U m \vert G_{PLL}(j\omega_{BW})\vert=\frac{1}{\sqrt{2}}\cdot\frac{1}{U_m} ∣GPLL(jωBW)∣=21⋅Um1。
令 ω = ω B W \omega=\omega_{BW} ω=ωBW,则有:
1 U m ⋅ ( ω n 2 ) 2 + ( 2 ζ ω n ω B W ) 2 ( ω n 2 − ω B W 2 ) 2 + ( 2 ζ ω n ω B W ) 2 = 1 2 ⋅ 1 U m \frac{1}{U_m}\cdot\frac{\sqrt{(\omega_n^2)^2+(2\zeta\omega_n\omega_{BW})^2}}{\sqrt{(\omega_n^2-\omega_{BW}^2)^2+(2\zeta\omega_n\omega_{BW})^2}}=\frac{1}{\sqrt{2}}\cdot\frac{1}{U_m} Um1⋅(ωn2−ωBW2)2+(2ζωnωBW)2(ωn2)2+(2ζωnωBW)2=21⋅Um1
等式两边同时消去 1 U m \frac{1}{U_m} Um1 并平方可得:
( ω n 2 ) 2 + ( 2 ζ ω n ω B W ) 2 ( ω n 2 − ω B W 2 ) 2 + ( 2 ζ ω n ω B W ) 2 = 1 2 \frac{(\omega_n^2)^2+(2\zeta\omega_n\omega_{BW})^2}{(\omega_n^2-\omega_{BW}^2)^2+(2\zeta\omega_n\omega_{BW})^2}=\frac{1}{2} (ωn2−ωBW2)2+(2ζωnωBW)2(ωn2)2+(2ζωnωBW)2=21
将上式进行整理和化简,令 x = ω B W ω n x = \frac{\omega_{BW}}{\omega_n} x=ωnωBW,则有:
1 + ( 2 ζ x ) 2 ( 1 − x 2 ) 2 + ( 2 ζ x ) 2 = 1 2 \frac{1+(2\zeta x)^2}{(1 - x^2)^2+(2\zeta x)^2}=\frac{1}{2} (1−x2)2+(2ζx)21+(2ζx)2=21
2 [ 1 + ( 2 ζ x ) 2 ] = ( 1 − x 2 ) 2 + ( 2 ζ x ) 2 2\left[1+(2\zeta x)^2\right]=(1 - x^2)^2+(2\zeta x)^2 2[1+(2ζx)2]=(1−x2)2+(2ζx)2
2 + 8 ζ 2 x 2 = 1 − 2 x 2 + x 4 + 4 ζ 2 x 2 2 + 8\zeta^2x^2=1 - 2x^2+x^4+4\zeta^2x^2 2+8ζ2x2=1−2x2+x4+4ζ2x2
x 4 − ( 4 ζ 2 + 2 ) x 2 − 1 = 0 x^4 -(4\zeta^2 + 2)x^2 - 1=0 x4−(4ζ2+2)x2−1=0
这是一个关于 x 2 x^2 x2 的一元二次方程,根据求根公式可得:
x 2 = ( 4 ζ 2 + 2 ) ± ( 4 ζ 2 + 2 ) 2 + 4 2 x^2=\frac{(4\zeta^2 + 2)\pm\sqrt{(4\zeta^2 + 2)^2+4}}{2} x2=2(4ζ2+2)±(4ζ2+2)2+4
因为 x = ω B W ω n x=\frac{\omega_{BW}}{\omega_n} x=ωnωBW,且 ω B W > 0 \omega_{BW}>0 ωBW>0,所以取正根:
x 2 = ( 4 ζ 2 + 2 ) + ( 4 ζ 2 + 2 ) 2 + 4 2 x^2=\frac{(4\zeta^2 + 2)+\sqrt{(4\zeta^2 + 2)^2+4}}{2} x2=2(4ζ2+2)+(4ζ2+2)2+4
x 2 = 1 + 2 ζ 2 + 2 + 4 ζ 2 + 4 ζ 4 x^2=1 + 2\zeta^2+\sqrt{2 + 4\zeta^2+4\zeta^4} x2=1+2ζ2+2+4ζ2+4ζ4
又因为 x = ω B W ω n x=\frac{\omega_{BW}}{\omega_n} x=ωnωBW,所以 ω B W = ω n ⋅ 1 + 2 ζ 2 + 2 + 4 ζ 2 + 4 ζ 4 \omega_{BW}=\omega_n\cdot\sqrt{1 + 2\zeta^2+\sqrt{2 + 4\zeta^2+4\zeta^4}} ωBW=ωn⋅1+2ζ2+2+4ζ2+4ζ4。
由于 f B W = ω B W 2 π f_{BW}=\frac{\omega_{BW}}{2\pi} fBW=2πωBW,最终可得:
f B W = 1 2 π ⋅ ω n ⋅ 1 + 2 ζ 2 + 2 + 4 ζ 2 + 4 ζ 4 f_{BW}=\frac{1}{2\pi}\cdot\omega_n\cdot\sqrt{1 + 2\zeta^2+\sqrt{2 + 4\zeta^2+4\zeta^4}} fBW=2π1⋅ωn⋅1+2ζ2+2+4ζ2+4ζ4
4. 具体步骤
当电压为1的时候,即可通过下面方式算得pi参数。
- 根据 K P L L p K_{PLLp} KPLLp 和 K P L L i K_{PLLi} KPLLi 的值,计算自然频率 ω n = K P L L i \omega_n=\sqrt{K_{PLLi}} ωn=KPLLi。
- 计算阻尼比 ζ = K P L L p 2 K P L L i \zeta=\frac{K_{PLLp}}{2\sqrt{K_{PLLi}}} ζ=2KPLLiKPLLp。
- 带入带宽公式计算 ω B W \omega_{BW} ωBW。
如有具体的参数,可以进一步计算!