Colmap论文——《Structure-from-Motion Revisited》论文阅读笔记

Structure-from-MotionSfM)即运动结构恢复,数十年来一直是计算机视觉领域的热门研究方向之一,实现了众多实际应用,尤其在近景三维重建中,该算法从获取的目标物系列影像出发,最终获取较高精度的目标物稀疏三维点云[^2]。 Johannes L. Schönberger和Jan - Michael Frahm所著的《Structure - from - Motion Revisited》讨论了一种新的增量式SfM技术,旨在改进现有的3D重建流程,使其更加健壮、准确、完整和可扩展,以期构建一个真正通用的SfM流程[^1]。 为了将全局SfM的增量鲁棒性和高效性结合起来,以前的工作制定了混合系统。例如HSfM建议使用旋转增量估计相机位置,Liu等人提出了一种图划分方法,先将整个图像集划分为重叠的聚类,在每个集群内通过全局SfM方法估计相机姿态,但这些方法因相机本质不准确而存在局限性,而有新方法通过不同的建模目标在全局定位步骤克服了该限制[^3]。 SfMCOLMAP平台有应用,COLMAP是从图像到3D模型的革命性Structure - from - Motion平台,其项目地址为https://gitcode.com/GitHub_Trending/co/colmap [^4]。 ### 代码示例 虽然没有直接给出SfM的完整代码,但以下是一个简单的Python伪代码示例,展示可能的流程: ```python # 示意:假设存在一些函数用于SfM流程 def feature_extraction(images): # 图像特征提取 pass def feature_matching(features): # 特征匹配 pass def estimate_pose(matches): # 相机姿态估计 pass def reconstruct_3d(poses, matches): # 3D重建 pass # 示例使用 images = [] # 假设这里有一系列图像 features = feature_extraction(images) matches = feature_matching(features) poses = estimate_pose(matches) point_cloud = reconstruct_3d(poses, matches) ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zeeq_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值