电磁元件(电阻,电容与电感)

电阻,电容与电感是电路最基础的元件,我们曾学习过许许多多包含他们的电路,却从未真正关心过他们本身
今天,就让我们关心一下这些任劳任怨的元件,了解他们背后的基础机理

Resistor

Basic introduction

一段长度为 d l dl dl的导体,其电阻为
d R = d V I dR=\frac{dV}{I} dR=IdV
假设导体一端为a,一端为b, a的电势高于b
对其积分,最后得出的电阻完全体为
R = V a b I R=\frac{V_{ab}}{I} R=IVab
假设导体两端电势差为 V 0 V_0 V0, A是导体的截面积, σ \sigma σ是材料的电导率,则电阻可以表示为
R = V 0 I = l σ A R=\frac{V_0}{I}=\frac{l}{\sigma A} R=IV0=σAl

Example

有一半径为a,电导率为σ的长直导线,被电导率为0.1σ的外壳包裹
a) 外壳的厚度达到多少时,原导线的电阻可以被削减为原来的50%
b) 假设通过带壳导线的电流为I, 找到原导线和外壳的J 和 E

R u n c o a t e d = 1 / ( σ π a 2 ) R_{uncoated}=1/(σπa^2 ) Runcoated=1/(σπa2)
当电流通过时,可以把原导线和外壳想象为两个并联的电阻
R c o a t e d + u n c o a t e d = 50 % ∗ R = R 2 R_{coated+uncoated}=50\%*R=\frac{R}{2} Rcoated+uncoated=50%R=2R
假设外壳的厚度为t
R c o a t e d = 1 0.1 σ π [ ( a + t ) 2 − a 2 ] = R = 1 σ π a 2 R_{coated}=\frac{1}{0.1σπ[(a+t)^2-a^2 ]} =R=\frac{1}{σπa^2 } Rcoated=0.1σπ[(a+t)2a2]1=R=σπa21
a 2 + 2 a t + t 2 − a 2 = 10 a 2 a^2+2at+t^2-a^2=10a^2 a2+2at+t2a2=10a2

解二元一次方程,得出外壳厚度t

Capacitor

电容器电容为C,存在里面的电荷总数为Q,两板之间的电势差为V
Q V = C \frac{Q}{V}=C VQ=C
单位: 1 F ( f a r a d ) = 1 C / V ( c o u l o m b / v o l t ) 1F(farad)=1C/V(coulomb/volt) 1Ffarad=1C/Vcoulomb/volt

若两板之间电介质常数为 ϵ 0 \epsilon_0 ϵ0,板面积为S,间距为d,则电容为:
C = Q V = ϵ 0 S d C=\frac{Q}{V}=\frac{\epsilon_0S}{d} C=VQ=dϵ0S

大多数电容器都用绝缘体作为中间介质,这样做的原因是:

  1. 保持板之间的物理分离
  2. 增加板之间可能的最大电位差
  3. 当板间充满介质时,电容增大

Edge Effect and fringing fields

边缘效应指电容器板边缘的电场线并非直线的现象,这些电场线代表的非均匀场叫做Fringing fields
通常,我们让板的面积远大于板之间的距离 d < < S d<<\sqrt S d<<S 来忽视这种现象

Capacitor contain two dielectrics

对于板间填充了两种不同介质的电容器,它的电容应如何计算呢?
这里,我们可以将不同的介质区域视为两个串联的电容器,而总电容就是两个串联电容之和,设两种介质的介电常数分别为 ϵ 1 , ϵ 2 \epsilon_1,\epsilon_2 ϵ1,ϵ2
1 C = 1 C 1 + 1 C 2 \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2} C1=C11+C21
C 1 = ϵ 1 S / d 1 C_1=\epsilon_1S/d_1 C1=ϵ1S/d1
C 2 = ϵ 2 S / d 2 C_2=\epsilon_2S/d_2 C2=ϵ2S/d2

这是比较直观的方法,还有更加基本的方法,就是利用总电势差 V = E 1 d 1 + E 2 d 2 V=E_1d_1+E_2d_2 V=E1d1+E2d2
然后用边缘情况判断,得出 D 1 = D 2 , ϵ 1 E 1 = ϵ 2 E 2 D_1=D_2, \epsilon_1E_1=\epsilon_2E_2 D1=D2,ϵ1E1=ϵ2E2
ρ s 1 = D 1 = ϵ 1 E 1 = ϵ 2 E 2 = ρ s 2 = ρ s \rho_{s1}=D_1=\epsilon_1E_1=\epsilon_2E_2=\rho_{s2}=\rho_s ρs1=D1=ϵ1E1=ϵ2E2=ρs2=ρs
最后利用 C = ρ s S V C=\frac{\rho_sS}{V} C=VρsS得出总电容

Calculation of capacitance

通常我们知道Q,
为了得到C,
我们需要得到E,
E通常用高斯定律得到

Energy stored in capacitor

电容器所做的事情是将电荷在板之间运送
最开始,电容器没有充电,随后,它将正电荷从负极板运到正极板,重复这个过程直到正极板为+Q,负极板为-Q,最终电容器存储的能量为:
W = 1 2 C V 2 W=\frac{1}{2}CV^2 W=21CV2

Inductor

电感也被称为线圈,它会将电流带来的能量存在磁场中

Self-inductance

一个匝数为N的电感通过的电流为I,产生的通量为Φ
匝数与通量的乘积NΦ被称为磁链(flux linkage)
对于单匝线圈,磁链等于总磁通量
电感(或自感),是指磁链与通过的电流之比:
L = N ϕ I L=\frac{N\phi}{I} L=INϕ
此定义只适用于线性材料(不包含铁磁性材料)
电感单位为H

Mutual inductance

想象两个相邻的闭环 C 1 , C 2 C_1, C_2 C1,C2,他们围成的面积分别为 S 1 , S 2 S_1, S_2 S1,S2,如果一个电流 I 1 I_1 I1流过 C 1 C_1 C1,它就会产生一个磁场 B 1 B_1 B1,这个磁场的通量会穿过 S 2 S_2 S2,从而引发互感。互感磁通 ϕ \phi ϕ为:
ϕ 12 = ∫ S 2 B 1 ⋅ d s 2 = L 12 I 1 \phi_{12}=\int_{S_2}B_1\cdot ds_2=L_{12}I_1 ϕ12=S2B1ds2=L12I1
ϕ 12 \phi_{12} ϕ12与电流 I 1 I_1 I1成正比,他们的比例常数 L 12 L_{12} L12被称为互感

根据纽曼公式,互感的计算方式如下:
L 12 = μ 0 4 π ∮ C 1 ∮ C 2 d l 1 ⋅ d l 2 R = N 2 ϕ 12 I 1 L_{12}=\frac{\mu_0}{4\pi}\oint_{C_1}\oint_{C_2}\frac{dl_1\cdot dl_2}{R}=\frac{N_2\phi_{12}}{I_1} L12=4πμ0C1C2Rdl1dl2=I1N2ϕ12
L 21 = N 1 ϕ 21 I 2 L_{21}=\frac{N_1\phi_{21}}{I_2} L21=I2N1ϕ21

Calculation of inductance

通常我们知道电流I
根据安倍环路定理我们可以知道磁场强度H,
根据 B = μ 0 H B=\mu_0H B=μ0H我们可以得到磁感应强度B,
根据 ϕ = ∬ B ⋅ d s \phi=\iint B\cdot ds ϕ=Bds我们可以得到磁通量Φ
从而最终得出电感

Case study

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值