电阻,电容与电感是电路最基础的元件,我们曾学习过许许多多包含他们的电路,却从未真正关心过他们本身
今天,就让我们关心一下这些任劳任怨的元件,了解他们背后的基础机理
Resistor
Basic introduction
一段长度为
d
l
dl
dl的导体,其电阻为
d
R
=
d
V
I
dR=\frac{dV}{I}
dR=IdV
假设导体一端为a,一端为b, a的电势高于b
对其积分,最后得出的电阻完全体为
R
=
V
a
b
I
R=\frac{V_{ab}}{I}
R=IVab
假设导体两端电势差为
V
0
V_0
V0, A是导体的截面积,
σ
\sigma
σ是材料的电导率,则电阻可以表示为
R
=
V
0
I
=
l
σ
A
R=\frac{V_0}{I}=\frac{l}{\sigma A}
R=IV0=σAl
Example
有一半径为a,电导率为σ的长直导线,被电导率为0.1σ的外壳包裹
a) 外壳的厚度达到多少时,原导线的电阻可以被削减为原来的50%
b) 假设通过带壳导线的电流为I, 找到原导线和外壳的J 和 E
R
u
n
c
o
a
t
e
d
=
1
/
(
σ
π
a
2
)
R_{uncoated}=1/(σπa^2 )
Runcoated=1/(σπa2)
当电流通过时,可以把原导线和外壳想象为两个并联的电阻
R
c
o
a
t
e
d
+
u
n
c
o
a
t
e
d
=
50
%
∗
R
=
R
2
R_{coated+uncoated}=50\%*R=\frac{R}{2}
Rcoated+uncoated=50%∗R=2R
假设外壳的厚度为t
R
c
o
a
t
e
d
=
1
0.1
σ
π
[
(
a
+
t
)
2
−
a
2
]
=
R
=
1
σ
π
a
2
R_{coated}=\frac{1}{0.1σπ[(a+t)^2-a^2 ]} =R=\frac{1}{σπa^2 }
Rcoated=0.1σπ[(a+t)2−a2]1=R=σπa21
a
2
+
2
a
t
+
t
2
−
a
2
=
10
a
2
a^2+2at+t^2-a^2=10a^2
a2+2at+t2−a2=10a2
解二元一次方程,得出外壳厚度t
Capacitor
电容器电容为C,存在里面的电荷总数为Q,两板之间的电势差为V
Q
V
=
C
\frac{Q}{V}=C
VQ=C
单位:
1
F
(
f
a
r
a
d
)
=
1
C
/
V
(
c
o
u
l
o
m
b
/
v
o
l
t
)
1F(farad)=1C/V(coulomb/volt)
1F(farad)=1C/V(coulomb/volt)
若两板之间电介质常数为
ϵ
0
\epsilon_0
ϵ0,板面积为S,间距为d,则电容为:
C
=
Q
V
=
ϵ
0
S
d
C=\frac{Q}{V}=\frac{\epsilon_0S}{d}
C=VQ=dϵ0S
大多数电容器都用绝缘体作为中间介质,这样做的原因是:
- 保持板之间的物理分离
- 增加板之间可能的最大电位差
- 当板间充满介质时,电容增大
Edge Effect and fringing fields
边缘效应指电容器板边缘的电场线并非直线的现象,这些电场线代表的非均匀场叫做Fringing fields
通常,我们让板的面积远大于板之间的距离
d
<
<
S
d<<\sqrt S
d<<S来忽视这种现象
Capacitor contain two dielectrics
对于板间填充了两种不同介质的电容器,它的电容应如何计算呢?
这里,我们可以将不同的介质区域视为两个串联的电容器,而总电容就是两个串联电容之和,设两种介质的介电常数分别为
ϵ
1
,
ϵ
2
\epsilon_1,\epsilon_2
ϵ1,ϵ2
1
C
=
1
C
1
+
1
C
2
\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}
C1=C11+C21
C
1
=
ϵ
1
S
/
d
1
C_1=\epsilon_1S/d_1
C1=ϵ1S/d1
C
2
=
ϵ
2
S
/
d
2
C_2=\epsilon_2S/d_2
C2=ϵ2S/d2
这是比较直观的方法,还有更加基本的方法,就是利用总电势差
V
=
E
1
d
1
+
E
2
d
2
V=E_1d_1+E_2d_2
V=E1d1+E2d2
然后用边缘情况判断,得出
D
1
=
D
2
,
ϵ
1
E
1
=
ϵ
2
E
2
D_1=D_2, \epsilon_1E_1=\epsilon_2E_2
D1=D2,ϵ1E1=ϵ2E2
ρ
s
1
=
D
1
=
ϵ
1
E
1
=
ϵ
2
E
2
=
ρ
s
2
=
ρ
s
\rho_{s1}=D_1=\epsilon_1E_1=\epsilon_2E_2=\rho_{s2}=\rho_s
ρs1=D1=ϵ1E1=ϵ2E2=ρs2=ρs
最后利用
C
=
ρ
s
S
V
C=\frac{\rho_sS}{V}
C=VρsS得出总电容
Calculation of capacitance
通常我们知道Q,
为了得到C,
我们需要得到E,
E通常用高斯定律得到
Energy stored in capacitor
电容器所做的事情是将电荷在板之间运送
最开始,电容器没有充电,随后,它将正电荷从负极板运到正极板,重复这个过程直到正极板为+Q,负极板为-Q,最终电容器存储的能量为:
W
=
1
2
C
V
2
W=\frac{1}{2}CV^2
W=21CV2
Inductor
电感也被称为线圈,它会将电流带来的能量存在磁场中
Self-inductance
一个匝数为N的电感通过的电流为I,产生的通量为Φ
匝数与通量的乘积NΦ被称为磁链(flux linkage)
对于单匝线圈,磁链等于总磁通量
电感(或自感),是指磁链与通过的电流之比:
L
=
N
ϕ
I
L=\frac{N\phi}{I}
L=INϕ
此定义只适用于线性材料(不包含铁磁性材料)
电感单位为H
Mutual inductance
想象两个相邻的闭环
C
1
,
C
2
C_1, C_2
C1,C2,他们围成的面积分别为
S
1
,
S
2
S_1, S_2
S1,S2,如果一个电流
I
1
I_1
I1流过
C
1
C_1
C1,它就会产生一个磁场
B
1
B_1
B1,这个磁场的通量会穿过
S
2
S_2
S2,从而引发互感。互感磁通
ϕ
\phi
ϕ为:
ϕ
12
=
∫
S
2
B
1
⋅
d
s
2
=
L
12
I
1
\phi_{12}=\int_{S_2}B_1\cdot ds_2=L_{12}I_1
ϕ12=∫S2B1⋅ds2=L12I1
ϕ
12
\phi_{12}
ϕ12与电流
I
1
I_1
I1成正比,他们的比例常数
L
12
L_{12}
L12被称为互感
根据纽曼公式,互感的计算方式如下:
L
12
=
μ
0
4
π
∮
C
1
∮
C
2
d
l
1
⋅
d
l
2
R
=
N
2
ϕ
12
I
1
L_{12}=\frac{\mu_0}{4\pi}\oint_{C_1}\oint_{C_2}\frac{dl_1\cdot dl_2}{R}=\frac{N_2\phi_{12}}{I_1}
L12=4πμ0∮C1∮C2Rdl1⋅dl2=I1N2ϕ12
L
21
=
N
1
ϕ
21
I
2
L_{21}=\frac{N_1\phi_{21}}{I_2}
L21=I2N1ϕ21
Calculation of inductance
通常我们知道电流I
根据安倍环路定理我们可以知道磁场强度H,
根据
B
=
μ
0
H
B=\mu_0H
B=μ0H我们可以得到磁感应强度B,
根据
ϕ
=
∬
B
⋅
d
s
\phi=\iint B\cdot ds
ϕ=∬B⋅ds我们可以得到磁通量Φ
从而最终得出电感