对一阶电路的瞬态分析


一阶电路是简化后只含有一个电容或电感元件的电路,而在这些电路中,常常会需要分析开关断连前后的情况,这就需要对电路做瞬态分析

在阅读本文之前,觉得需要回顾电容,电感性质的,可以看看之前写的电磁元件, 这里主要用到两个相关公式:

  1. 电容器所在电路的电流 i = C d v d t i=C\frac{dv}{dt} i=Cdtdv
  2. 电感两端的电压 v = L d i d t v=L\frac{di}{dt} v=Ldtdi

我们还会用到一些表示方法,大写的字母 V s , I S V_s, I_S Vs,IS表示的是源的参数,它们不因时间改变而改变
小写的 v ( t ) , i ( t ) , p ( t ) v(t), i(t), p(t) v(t),i(t),p(t)与时间相关,是时间的函数

1. Transient and steady-state

在电路通断前后,电容器的电压变化看起来似乎是一瞬间的事,然而根据公式 i = C d v d t i=C\frac{dv}{dt} i=Cdtdv,如果电压真的是瞬间变化的,那么电流会趋于无限大,这在现实中并不成立。因此电压的变化一定是连续的,这个在极短时间内变化的量就被称为瞬态(Transient)

一段时间之后,电容器充能完毕,它就会表现出断路的性质,这时的电路状态被称为稳态(steady-state)

同理,电感电路也存在瞬态和稳态

在对电路进行分析时,我们常常将其按时间划分为四个阶段:

  1. t < 0,此时是电路的起始状态,处于稳态
  2. t = 0,此时电路变化,瞬态发生 ,这一瞬间我们还会提取出两个值t(0+)和t(0-),t(0-)是起始稳态的最终值,t(0+)是电路变化后的第一个值,在微分中用作起始值(Initial condition)
  3. t = A,此时电路又一次达到稳态,因此,瞬态发生在0 < t < A这段时间内,而t > A时电路处于稳态

2. Source free circuit → \rightarrow natural response

有时,在电路变化后,外部电源不再存在,此时的电路是无源电路(source free circuit),能量皆由内部的电感或电容供应,一切自然发生而不受外力驱动,此时的响应也被称为自然响应(natural response)

2.1 RL, RC

2.1.1 RL circuit

下图是无源RL电路图,可以看到,电路中没有电源,电流由电感提供
FREERL
假设t = 0时, i L ( 0 ) = I 0 i_L(0)=I_0 iL(0)=I0
对电路应用KVL:
R i L + v L = 0 Ri_L+v_L=0 RiL+vL=0
应用通过电感的电流公式,可以得到:
R i L + L d i L d t = 0 Ri_L+L\frac{di_L}{dt}=0 RiL+LdtdiL=0
找到 i L ( t ) i_L(t) iL(t)的表达式,使其满足上式,且在 t = 0 t=0 t=0时的值为 I 0 I_0 I0
最终解出的表达式为:
i L ( t ) = I 0 e − R t L = I 0 e − t τ i_L(t)=I_0e^{\frac{-Rt}{L}}=I_0e^{\frac{-t}{\tau}} iL(t)=I0eLRt=I0eτt
其中 τ = L / R \tau=L/R τ=L/R时是RL电路的时间常量,R是从电感视角看去的总电阻

经过 τ \tau τ 时间,电感提供的电流 i i i 会降到初始电流 I 0 I_0 I0 的3.6788%,这一数字需要记忆
一般在经过 5 τ 5\tau 5τ 后,电感能量视为释放完毕

我们还可以从能量的角度看,电路中电阻的功率为:
p R = i 2 R p_R=i^2R pR=i2R
代入电感的电流公式
p R = I 0 2 R e − 2 R t / L p_R={I_0}^2Re^{-2Rt/L} pR=I02Re2Rt/L
功率对时间积分可以得到做功,积分范围为 0 → ∞ 0\rightarrow\infty 0最终得出结果为
1 2 L I 0 2 \frac{1}{2}L{I_0}^2 21LI02
这个结果电感初始存储的能量表达式相同,这意味着电感的能量被电阻掏空了

2.1.2 RC circuit

对无源RC电路的分析与RL基本一致,不过应用的定律从KVL变成了KCL
FREERC
可以看到,在t = 0时,形成了一个无源RC电路
分析时,我们首先假设电容器电压 v c ( t ) v_c(t) vc(t) t = 0 t = 0 t=0时的电压为 V 0 V_0 V0
接着,应用KCL,我们可以得到:
i C + i R = C d v c d t + v c R = 0 i_C+i_R=C\frac{dv_c}{dt}+\frac{v_c}{R}=0 iC+iR=Cdtdvc+Rvc=0
解方程,得到电容器电压随时间变化的表达式为
v c ( t ) = V 0 e − t / R C = V 0 e − t / τ v_c(t)=V_0e^{-t/RC}=V_0e^{-t/\tau} vc(t)=V0et/RC=V0et/τ
τ = R C \tau=RC τ=RC 是RC电路的时间常量
同样的,我们通常认为电容器在 5 τ 5\tau 5τ 之后放电完毕

2.2 Initial condition

这里提到的Initial condition指的是电路改变后瞬间的状态,而非整个电路改变之前的状态

电路分析时,有这样一些要点需要牢记

  1. 注意通过电感的电流方向和电容器的极性
  2. 电容器电压和电感电流都不会瞬间变化,因此 v c ( 0 + ) = v c ( 0 − ) , i L ( 0 + ) = i L ( 0 − ) v_c(0^+)=v_c(0^-), i_L(0^+)=i_L(0^-) vc(0+)=vc(0),iL(0+)=iL(0)
  3. 在寻找变化后的初始值时,先关注上述两个不会突然改变的值

2.3 Summary

电容器电压和电感电流随时间变化的关系可以被总结如下:
x ( t ) = x 0 e − t / τ x(t)=x_0e^{-t/\tau} x(t)=x0et/τ
其中 x ( t ) x(t) x(t)对于电容来说是电压,对于电感来说是电流
其中 x 0 x_0 x0是电容的初始电压,是电感的初始电流
RL电路: τ = L / R \tau=L/R τ=L/R
RC电路: τ = R C \tau=RC τ=RC

3. Driven circuit - Circuit with source → \rightarrow forced response

在source free circuit中,我们主要讨论了源被突然移出电路的情况,现在,我们来讨论源被突然加进电路的情况,其中,我们会用到函数(step function)来描述电路,这一函数在《我们身边的信号》中介绍过,这里的用法差不多,比如 v s ( t ) = V s u ( t ) v_s(t)=V_su(t) vs(t)=Vsu(t),就表示t > 0时接入电源

3.1 Solving the first order differential equation

当RC电路中突然接入一个直流源,它可以通过阶梯函数建模,而它引起的响应被称为阶跃响应(step response)

如图是一个Driven RC 电路
drivenRC
应用KCL,可以得到:
C d v c d t + v c − V s u ( t ) R = 0 C\frac{dv_c}{dt}+\frac{v_c-V_su(t)}{R}=0 Cdtdvc+RvcVsu(t)=0
V s u ( t ) V_su(t) Vsu(t)是电源电压随时间的表达式,进一步计算:
d v c d t + v c R C = V s R C u ( t ) = V s R C    f o r   t > 0 \frac{dv_c}{dt}+\frac{v_c}{RC}=\frac{V_s}{RC}u(t)=\frac{V_s}{RC}\ \ for\ t>0 dtdvc+RCvc=RCVsu(t)=RCVs  for t>0
对RL电路做类似的分析,可以总结如下公式:
formula for driven circuit
其中x(t)是未知表达式,f(t)是驱动函数(forcing function
这一套东西看起来很复杂,而且不好应用,所以接下来我们给出一个好应用的
f ( t ) f(t) f(t)设为 X f X_f Xf,经过一系列非常巧妙但对我们来说不是很重要的数学计算,可以得到:
x ( t ) = X f + [ x ( 0 ) − X f ] e − t / τ x(t)=X_f+[x(0)-X_f]e^{-t/\tau} x(t)=Xf+[x(0)Xf]et/τ

3.2 RL, RC

将上面得到的表达式分别应用在RC和RL电路中
对于RC

  • x ( t ) x(t) x(t)是电容器上的电压 v c ( t ) v_c(t) vc(t)
  • x ( 0 ) x(0) x(0)是电容器在t = 0时的初始电压
  • X f X_f Xf是外部电压源 V s V_s Vs
  • 时间常量 τ = R C \tau=RC τ=RC

对于RL

  • x ( t ) x(t) x(t)是电感上的电流 i L ( t ) i_L(t) iL(t)
  • x ( 0 ) x(0) x(0)是电感在t = 0时的初始电流
  • X f X_f Xf是外部电流源 I s I_s Is
  • 时间常量 τ = L / R \tau=L/R τ=L/R

对于上面的表达式,其实还有一种比较简单的理解方式,即:
x ( t ) = x ( ∞ ) + [ x ( 0 ) − x ( ∞ ) ] e − t / τ x(t)=x(\infty)+[x(0)-x(\infty)]e^{-t/\tau} x(t)=x()+[x(0)x()]et/τ
其中 x ( 0 ) x(0) x(0)是起始值, x ( ∞ ) x(\infty) x()是最终值,这个值对于电容器是电压,对于电感是电流
因此,寻找电容电压或电感电流表达式时,只需要获得三个输入:

  1. 起始电容电压/电感电流
  2. 最终电容电压/电感电流
  3. 时间常量

这也是做题时的主要思路

3.3 Complete response

上述公式表达的响应实际上是一个完整响应(Complete response),传统上我们有两种办法分解完整响应

第一种是将其分解为自然响应和强制响应
第二种是将其分解为瞬态响应和稳态响应

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值