Linux下基于OpenAI提供的baselines代码进行强化学习环境设置

配置TensorFlow-GPU

使用Anaconda安装python虚拟环境

% 创建名为baselines的3.6版本python虚拟环境
conda create -n baselines python=3.6
% 切换到baselines环境下
source activate baselines

这里给出我安装TensorFlow时的python、CUDA、CUDNN对应版本号

TensorFlow = 1.14 GPU版
python = 3.6
CUDA = 10.0
CUDNN = 7.6.5

然后依照以下文章步骤完成TensorFlow配置
https://blog.csdn.net/weixin_44136501/article/details/115944689?spm=1001.2014.3001.5501

或者直接使用下方指令也可完成相同效果。

conda install tensorflow-gpu=1.14 -c https://mirrors.ustc.edu.cn/anaconda/pkgs/main/linux-64/

配置baselines

1.下载代码

创建python虚拟环境并成功配置TensorFlow后,下载baseline的代码。

方法一:git clone

git clone https://github.com/openai/baselines.git

% 克隆到指定目录
git clone https://github.com/openai/baselines.git home/usr_name

方法二:进入GitHub网页下载

GitHub地址 下载之后解压到任一目录下

2.预先准备

在配置baselines之前,需要提前下载所需基础库。在终端命令行输入:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev

3.安装

% 所在目录切换到baselines解压后目录
cd xxx
pip install -e .

4.测试

pytest runner可以运行baselines全部测试。

pip install pytest
pytest

而如果是首次运行,命令行会连续报错提示缺少Module,根据提示不断安装缺少的第三方库即可。类似以下情况:
在这里插入图片描述
总结一下需要安装的库:

pip install matplotlib pandas filelock gym[atari] mpi4py
sudo apt-get install ffmpeg

配置MuJoCo

baselins中一些示例使用了mujoco的环境,如果需要配置请按照以下步骤。

1.下载

从官网上直接下载MuJoCo200 Linux并解压到~/.mujoco200目录
https://www.roboti.us/index.html

mkdir ~/.mujoco 
cp mujoco200_linux.zip ~/.mujoco 
cd ~/.mujoco 
unzip mujoco200_linux.zip

2.注册license

https://www.roboti.us/license.html

在官网注册一个license,教育邮箱注册可以获得一年免费期。

填写个人信息点击提交,随后会收到邮件,其中有Account Number
在这里插入图片描述
点击红色图的右侧对应平台可以获得一个程序,在你需要使用mujoco的主机上运行该程序获得对应的Computer ID,将两者都输入点击Register computer再次收到邮件,里面附带了mjkey.txt文件。
在这里插入图片描述
随后将该文件拷贝到 ~/.mujoco目录及 ~/.mujoco/mujoco200_linux/bin目录下。

cp mjkey.txt ~/.mujoco 
cp mjkey.txt ~/.mujoco/mujoco200_linux/bin

3.添加环境变量

% 打开配置文件
vim ~/.bashrc
% 在文件最末尾处添加两个环境变量
export LD_LIBRARY_PATH=~/.mujoco/mujoco200_linux/bin${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 
export MUJOCO_KEY_PATH=~/.mujoco${MUJOCO_KEY_PATH}

4.pip安装

pip3 install -U 'mujoco-py<2.1,>=2.0'
python

% python模式下
import mujoco_py
import os
mj_path, _ = mujoco_py.utils.discover_mujoco()
xml_path = os.path.join(mj_path, 'model', 'humanoid.xml')
model = mujoco_py.load_model_from_path(xml_path)
sim = mujoco_py.MjSim(model)

print(sim.data.qpos)
# [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

sim.step()
print(sim.data.qpos)
# [-2.09531783e-19  2.72130735e-05  6.14480786e-22 -3.45474715e-06
#   7.42993721e-06 -1.40711141e-04 -3.04253586e-04 -2.07559344e-04
#   8.50646247e-05 -3.45474715e-06  7.42993721e-06 -1.40711141e-04
#  -3.04253586e-04 -2.07559344e-04 -8.50646247e-05  1.11317030e-04
#  -7.03465386e-05 -2.22862221e-05 -1.11317030e-04  7.03465386e-05
#  -2.22862221e-05]

如果运行没报错则安装成功,baselines不需要再安装mujoco的可视化模块。

5.安装报错

一般输入pip3 install -U 'mujoco-py<2.1,>=2.0'会出现许多问题

错误一:

Exception:
Missing path to your environment variable.
Current values LD_LIBRARY_PATH=
Please add following line to .bashrc:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/yzy/.mujoco/mujoco200/bin

ERROR: Failed building wheel for mujoco-py
Failed to build mujoco-py
ERROR: Could not build wheels for mujoco-py which use PEP 517 and cannot be installed directly
在这里插入图片描述
报错提示缺少mujoco环境变量,添加后再次运行该报错就消失了。

% 打开配置文件
vim ~/.bashrc
% 在文件最末尾处添加两个环境变量
export LD_LIBRARY_PATH=~/.mujoco/mujoco200_linux/bin${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 
export MUJOCO_KEY_PATH=~/.mujoco${MUJOCO_KEY_PATH}

source ~/.bashrc # 重新运行.bashrc文件

错误二:

/tmp/pip-install-tej3oi73/mujoco-py_7336c7d127184370b6ce6a5e5b7bec7f/mujoco_py/gl/osmesashim.c:1:10: fatal error: GL/osmesa.h: No such file or directory
1 | #include <GL/osmesa.h>
| ^~~~~~~~~~~~~
compilation terminated.
error: command ‘gcc’ failed with exit status 1
ERROR: Failed building wheel for mujoco-py
Failed to build mujoco-py
ERROR: Could not build wheels for mujoco-py which use PEP 517 and cannot be installed directly
在这里插入图片描述
按照官方的解决方案解决了

sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3
要本地构建OpenAI开发环境,你需要按照以下步骤进行操作: 1. 安装Python环境:首先,你需要安装Python编程语言的环境。建议使用最新的Python版本,可以从官方网站(python.org)下载并按照指示进行安装。 2. 安装虚拟环境工具:在搭建开发环境时,建议使用虚拟环境来隔离不同项目的依赖。你可以选择安装虚拟环境工具,例如virtualenv或conda。这些工具可以帮助你创建和管理多个独立的Python环境。 3. 安装OpenAI库:接下来,你需要安装OpenAI库。OpenAI有几个不同的库,例如Gym、Baselines和Stable Baselines等。你可以使用pip命令安装这些库,例如pip install gym或pip install baselines。 4. 设置API密钥:如果你计划使用OpenAI的API进行开发,你需要注册OpenAI账户,并获得API密钥。将API密钥设置环境变量,以便在你的代码进行调用。 5. 安装其他依赖:除了OpenAI库外,你的项目可能还有其他依赖项。使用pip安装这些依赖项,以确保你的项目能够正常运行。 6. 编写代码:现在,你已经搭建了OpenAI的开发环境,可以开始编写代码了!根据你的需求,使用OpenAI库创建强化学习模型、训练智能体或测试算法等。 7. 运行代码:在完成代码编写后,你可以通过运行Python脚本启动你的项目。确保你的开发环境配置正确,并按照OpenAI库的文档进行使用。 总而言之,要本地构建OpenAI开发环境,你需要安装Python环境、虚拟环境工具、OpenAI库和其他依赖项,并在代码设置API密钥。完成这些步骤后,你就可以使用OpenAI进行强化学习项目的开发了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值