“原型"是指样本空间中具有代表性的点。
原型聚类算法是假设聚类结构能通过一组原型进行刻画,在现实聚类任务中极为常用。
通常情形下,算法先对原型进行初始化,然后对原型进行迭代更新求解。采用不同的原型表示、不同的求解方式,将产生不同的算法。
1、原型聚类算法介绍
1.1、k均值(k-means )
给定样本集 D = { x 1 , x 2 , ⋯ , x m } D=\left\{ {x_1,x_2,\cdots,x_m}\right\} D={ x1,x2,⋯,xm}, "k均值"算法针对聚类所得簇划分 C = { C 1 , C 2 , ⋯ , C k } C=\left\{ {C_1,C_2,\cdots,C_k}\right\} C={ C1,C2,⋯,Ck} 最小化平方误差 E = ∑ i = 1 k ∑ x ∈ C i ∥ x − μ i ∥ 2 2 E=\sum_{i=1}^{k}\sum_{x\in C_i} \left \| x-\mu_i \right \|_2^2 E=i=1∑k
本文介绍了三种常见的原型聚类算法:k均值、学习向量量化(LVQ)和高斯混合聚类。k均值通过迭代更新簇均值来优化聚类;LVQ利用监督信息调整原型向量;高斯混合聚类采用概率模型表示原型。此外,还展示了使用Python的Scikit-learn库实现这两种算法的代码示例,并给出了评估指标。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=113853478&d=1&t=3&u=f25e13dcba02485d8f0e1fe375cd2b14)
1417

被折叠的 条评论
为什么被折叠?



