波士顿房价预测(二)
在(一)的基础上进行了数据的异常处理
库:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
读取数据:
train_data=pd.read_csv('train_dataset.csv')
test_data=pd.read_csv('test_dataset.csv')
train_price=train_data['PRICE']
del train_data['PRICE']
col_list=train_data.columns.tolist()
提取测试ID,为提交文件做准备:
test_id=test_data['ID']
del test_data['ID']
L=[]
for x in test_id:
s='id_'+str(x)
L.append(s)
异常值核心代码程序:
通过箱线图进行异常值的判断,同时在下阈值和上阈值的进行分界,把大于或小于该值的数据等于该值
def box_plot_outliers(data_ser, box_scale):
"""
利用箱线图去除异常值
:param data_ser: 接收 pandas.Series 数据格式
:param box_scale: 箱线图尺度,默认用 box_plot(scale=3&#