【Epoch,Batch,Iteration】深度学习模型训练相关基础概念光速理解!

🔥模型训练相关基础概念

  • Epoch: 一次 epoch 代表整个训练数据集已经被完整地送入神经网络进行了一轮训练。通常,模型需要多次 epoch 才能充分学习数据集中的模式。
  • Batch: 由于数据集可能过大,无法一次性全部加载到内存中进行训练,因此将数据集分成若干小部分,每一部分称为一个 batch。batch_size 指每个 batch 包含的样本数量
  • Iteration: 一次 iteration 指一个 batch 被送入神经网络进行一次前向传播(计算预测)和反向传播(更新权重)的过程。

参考下图⬇️
在这里插入图片描述

为了更清楚地理解,可以这样总结:

  • 假设你的数据集有 1000 个样本,你的 batch_size 设为 100。
  • 每次 epoch 中,你需要把所有 1000个样本都送入神经网络进行训练。
  • 由于 batch_size 是 100,你需要将数据集分成 10 个 batch(每个 batch 100 个样本)。
  • 因此,每个 epoch 会包含 10 次 iteration,因为每个 iteration 处理一个 batch。

图片来源:https://zhuanlan.zhihu.com/p/66021413

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值