🔥模型训练相关基础概念!
- Epoch:
一次 epoch 代表整个训练数据集
已经被完整地送入神经网络进行了一轮训练。通常,模型需要多次 epoch 才能充分学习数据集中的模式。 - Batch: 由于数据集可能过大,
无法一次性全部加载到内存中进行训练
,因此将数据集分成若干小部分,每一部分称为一个 batch。batch_size 指每个 batch 包含的样本数量
。 - Iteration:
一次 iteration 指一个 batch
被送入神经网络进行一次前向传播(计算预测)和反向传播(更新权重)
的过程。
参考下图⬇️
为了更清楚地理解,可以这样总结:
- 假设你的数据集有 1000 个样本,你的 batch_size 设为 100。
- 每次 epoch 中,你需要把所有 1000个样本都送入神经网络进行训练。
- 由于 batch_size 是 100,你需要将数据集分成 10 个 batch(每个 batch 100 个样本)。
- 因此,每个 epoch 会包含 10 次 iteration,因为每个 iteration 处理一个 batch。
图片来源:https://zhuanlan.zhihu.com/p/66021413