命名实体识别 – Named-entity recognition | NER
一、什么是命名实体识别?
命名实体识别(Named Entity Recognition,简称NER),又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。简单的讲,就是识别自然文本中的实体指称的边界和类别。
二、命名实体识别的发展历史
NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示。
阶段 1:早期的方法,如:基于规则的方法、基于字典的方法
阶段 2:传统机器学习,如:HMM、MEMM、CRF
阶段 3:深度学习的方法,如:RNN – CRF、CNN – CRF
阶段 4:近期新出现的一些方法,如:注意力模型、迁移学习、半监督学习的方法</