在HYDRUS代码中,非饱和土壤的水力特性用一组封闭形式的方程描述,类似于van Genuchten [1980]的方程,后者使用Mualem [1976]的统计孔径分布模型得到了非饱和水力导度函数的预测方程。原始的van Genuchten方程可以进行修改,以在描述饱和附近的水力特性时增加额外的灵活性[Vogel和Cislerova,1988]。用户还可以选择由Brooks和Corey [1964],Kosugi [1996]和Durner [1994]提出的模型。有关详细信息,请参阅手册(以及水力特性模型)。
变量 | 描述 | 单位 |
Qr | 剩余土壤含水量 | - |
Qs | 饱和土壤含水量 | - |
Alpha | 土壤含水保持函数中的参数 a | [L⁻¹] |
n | 土壤含水保持函数中的参数 n | - |
Ks | 饱和水力导度 | [LT⁻¹] |
l | 导度函数中的扭曲参数 | - |
当使用修改后的van Genuchten模型时[Vogel和Cislerova,1988]:
变量 | 描述 | 单位 |
Qa | 土壤含水保持函数中的参数 qa | - |
Qm | 土壤含水保持函数中的参数 qm | - |
Kk | 针对 qk 对应的水力导度的测定值,即 Kk | [LT⁻¹] |
Qk | 对应于 Kk 的土壤含水量,即 qk | - |
当使用Durner的[1994]模型时:
变量 | 描述 | 单位 |
w | 材料 M 的参数 w | - |
Alpha2 | 材料 M 的参数 a(第二重叠子区) | [L⁻¹] |
n2 | 材料 M 的参数 n(第二重叠子区) | - |
当使用由水含量梯度驱动的双孔隙模型时:
变量 | 描述 | 单位 |
QrIm | 材料 M 的不可动区域的参数 qr | - |
QsIm | 材料 M 的不可动区域的参数 qs | - |
Omega | 材料 M 的参数 w(质量传递系数) | [T⁻¹] |
当使用由压力头梯度驱动的双孔隙模型时:
变量 | 描述 | 单位 |
QrIm | 材料 M 的不可动区域参数 qr | - |
QsIm | 材料 M 的不可动区域参数 qs | - |
AlphaI | 材料 M 的不可动区域参数 a | [L⁻¹] |
nI | 材料 M 的不可动区域参数 n | - |
Omega | 材料 M 的参数 w(质量传递系数) | [T⁻¹] |
当使用双渗透模型时:
变量 | 描述 | 单位 |
QrFt | 材料 M 的裂缝区域参数 qr | - |
QsFr | 材料 M 的裂缝区域参数 qs | - |
AlphaFr | 材料 M 的裂缝区域参数 a | [L⁻¹] |
nFr | 材料 M 的裂缝区域参数 n | - |
KsFr | 材料 M 的裂缝区域参数 Ks | [LT⁻¹] |
lFr | 材料 M 的裂缝区域传导函数中的扭曲参数 | - |
w | 材料 M 的参数 w(宏观孔隙或裂缝域体积与总土壤系统体积的比率) | - |
Beta | 材料 M 的参数 b(取决于几何形状的形状因子) | - |
Gamma | 材料 M 的参数 g(缩放因子) | - |
a | 材料 M 的参数 d(有效扩散路径长度) | [L] |
Ksa | 材料 M 的参数 Ka(裂缝-基质界面的有效水力导数) | [LT⁻¹] |
"温度依赖性 - 勾选此框,如果水力特性被认为是与温度相关的。"
Soil Catalog
"所选土壤的水力参数已包含在一个目录中,用户可以从中进行选择。这些参数来自于van Genuchten模型的Carsel和Parrish [1988]以及Brooks-Corey模型的Rawls等人[1982]。
Rawls等人[1982]使用多元线性回归来估算BC参数,这些参数来自一个包含大约2540个土壤土层的大型数据库。Carsel和Parrish后来也使用了他们的回归方程,但结果经过了进一步的统计处理,以获得VG参数的概率密度函数(表面上,VG参数与BC参数相同或密切相关,如n=lambda+1)。因此,Carsel和Parrish的参数是从Rawls的估算中统计推导出来的;它们并没有独立地与Rawls数据库相匹配。
在使用这些参数值时,用户应谨慎;它们只代表不同纹理类别的非常粗略的平均值。"
Sand
Loamy Sand
Sandy Loam
Loam
Silt Loam
Sandy Clay Loam
Clay Loam
Silty Clay Loam
Sandy Clay
Silty Clay
Clay
Neural Network Predictions:
"HYDRUS-1D代码与Rosetta DLL(动态链接库)耦合,该DLL由美国盐度实验室的Marcel Schaap独立开发。Rosetta实现了土壤传递函数(PTFs),从土壤纹理类别信息、土壤纹理分布、容重以及一个或两个水分保持点的输入中以分层方式预测van Genuchten(1980)水分保持参数和饱和水力导纳(Ks)。Rosetta具有其自己的帮助功能,其中包含所有相关信息和参考文献。"
Parameter l in the hydraulic conductivity function:
在水力导纳函数中,参数l代表孔隙结构的扭曲度和孔隙连通性的影响。虽然Mualem [1976]最初估计其值为0.5,但在这方面没有一致的共识。例如,在分析UNSODA数据库后,Marcel Schaap建议该参数的值应为-1。
由于水力导纳函数的所有形状参数(a和n)都直接来自保水曲线,因此无法独立影响水力导纳函数的形状。只能使用饱和水力导纳Ks对其进行缩放。然而,通过引入参数l,有了机会a)影响K(h)的形状,b)在优化过程中获得了一种更自由的度,对于明确定义的实验数据(例如多步流出和蒸发方法)是有用的。
Hydraulic properties of structural materials (Schneider et al., 2010):
C-15-A混凝土:水泥、碳酸钙、沙子、石灰石骨料和减水剂的混合物
M1砂浆:水泥、硅灰、石灰石和减水剂的混合物
表格:具有单个n参数的滞后模型的van Genuchten参数。
通过反演建模,饱和水力导数Ks已优化为分别为5.67×10-13 m/s和5.87×10-14 m/s,对应于C-15-A混凝土和M1砂浆,这些数值明显低于实验中获得的数值(分别为4.58×10-11 m s-1和2.33×10-11 m s-1)。
参考文献:
Schneider, S., D. Mallants, and D. Jacques, Determining hydraulic properties of concrete and mortar by inverse modelling, Mater. Res. Soc. Symp. Proc. Vol. 1475, doi: 10.1557/opl.2012.601, Cambridge University Press, Cambridge, United Kingdom, 367-372, 2012.