第6章 反求水文地质参数的数值方法

 

前面几章所介绍的方法都是在已知地下水流动的微分方程类型以及水文地质参数 K、M、p、W(垂向渗流强度)和边界条件的前提下,求解渗流区 D 内的水头分布规律的数值方法。这就是所谓的水文地质计算中的正演问题。然而,在很多情况下,地下水流动的微分方程类型、水文地质参数以及一些边界条件往往是未知的,需要根据水文地质勘探资料和抽水试验资料以及天然水位动态观测资料来确定,这就是水文地质计算中的反演问题。在地下水动力学中所讲过的,根据抽水试验资料求渗透系数和给水度就是最基本的反演问题之一。

反演问题是水文地质计算中的一个重要课题。其任务是:①检验所选用的方程类型是否适当;②确定方程的系数(即含水层参数及源汇项);③校正边界条件等。这些问题是数值模型设计的主要问题,在下一章将专门讨论。本章主要介绍根据抽水试验资料和天然水位动态观测资料反求水文地质参数的基本方法。

6.1 反求参数问题的适定性

显然,根据抽水试验资料和天然水头动态观测资料反求水文地质参数时,有三个问题要考虑:

1. 根据实际资料反求渗流区的水文地质参数(有时包括边界流量),这样的解是否存在,即解的存在性问题;
2. 求得的参数是否唯一,即解的唯一性问题;
3. 当实测资料有微小误差时(实际工作中肯定存在这种情况),反求的水文地质参数的误差是否也微小,即水文地质参数是否连续依赖于实测资料,这就是解的稳定性问题。

如果这三个问题的回答都是肯定的,这个问题就称为适定的,否则就是不适定的。从水文地质问题本身而言,解的存在性是没有疑问的,下面只对解的唯一性和稳定性问题进行讨论。

6.1.1 解的唯一性


不同的水文地质条件有时可能产生相同的水头分布,因此,单从水头观测值来反求水文地质参数就有可能存在多种解,即解不是唯一的。例如,均质等厚二维承压含水层的稳定流动问题,当无源汇项时,其水头分布满足的微分方程为
 

如果已知边界上的水头分布,于是其定解问题为:

其中B为渗流区D的边界。由此可见,在同一区域同一边界条件下,不管导水系数T取何值,水头分布都是相同的。这就说明在不同的水文地质条件下(如导水系数T不同),有相同的水头分布。
再看一个例子。如非均质承压一维稳定流问题,设两端为一类边界条件,则其模型为
 

由于 H(x)是已知的,从而\partial H/\partial x也为已知。为了求T,将式(6.1.4)积分,得
 

即 

显然,上式中的C无法确定,因此T(x)也不能确定。由式(6.1.7)可见,C是一个任意常数,因而随C的取值不同将得到不同的T值,故此时T是不唯一的。但是,如果知道某个断面的流量,例如r=L处,即把边界条件式(6.1.6)改成
 

于是式(6.1.8)中的C便可确定下来,即C=-q。从而得到
 

可见这时T被唯一确定了。
由上所述,虽然一般地说,反求参数问题的解并不唯一,但只要适当地设法补充一些条件,那么求得的解可以是唯一的。


6.1.2解的稳定性


为了说明这个问题,仍然考虑一维承压稳定流模型:

由上述推导,得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值