第3章 基本数学和计算机代码

本书探讨了地下水流动的数学模型,基于质量守恒和达西定律推导控制方程,介绍边界条件和数值解方法。章节涵盖了从理论推导到代码执行的全过程,包括有限差分和有限元方法,以及代码验证和历史记录的重要性。
摘要由CSDN通过智能技术生成

对于严密数学分析引人注目的印象,以及其精密和优雅的氛围,我们不应忽视制约整个过程的前提的缺陷。也许没有比建立在未经强化的前提之上的复杂而优雅的数学过程更为诱人和危险的欺骗。 — T.C. Chamberlin(1899年)


3.1 介绍

地下连续体分为水位面以上的非饱和带,其中孔隙空间充满了空气和水,以及水位面以下的饱和带,其中孔隙空间完全被水填满。我们的书侧重于水位面以下的饱和带的流动。传统上,饱和带中的水称为地下水,我们遵循这一约定。地下连续体中水的流动称为可变饱和流(第12.2节);当我们提到模拟水位面以上的流动时,我们将使用术语非饱和流。

所有基于过程的地下水流模型都源于两个基本原理:质量守恒,即水不会被创造或销毁;和达西定律,即地下水从高到低的势能流动。地下水流的数学模型包括一个总控方程(由质量守恒和达西定律导出),代表问题领域内的过程;代表边界上的过程的边界条件;对于时变(瞬态)问题,有初始条件,指定模拟开始时依赖变量(即水头)的值。在本章中,我们推导地下水流的总控方程,介绍边界条件的数学,以及回顾近似总控方程的常用方法。数学模型可以通过解析或数值方法来解决。数值模型中边界条件的实施在第4.3节讨论,而初始条件则在第7.4节中涵盖。

模型应模拟解决建模目标所需的所有重要过程。

地下水流通常是所有地下水模型中的主导过程。我们的书侧重于在连续多孔介质中模拟地下水流动,不考虑密度效应。地下水流动的基本总控方程假设地下水的密度恒定且大致等于1.0克/立方厘米,这对于总溶解固体(TDS)浓度小于10,000毫克/升且大多数浅层含水层温度范围内的水是一个合理的假设。例如,4摄氏度的水密度为0.999973克/立方厘米,但加热到50摄氏度后密度为0.988047克/立方厘米。涉及密度效应的地下水问题中最常见的是沿海含水层中的海水入侵(第4.4节;第12.2节);海水的密度为1.025克/立方厘米,TDS约为35,000毫克/升。

在第12章中,我们简要总结了模拟地下水模型师需要考虑以解决高级问题的其他过程的方法。除了可变密度流之外,这些过程还包括裂缝和管道的流动;含水层压实;可变饱和流;多相流;以及溶质和热传输。这些过程中的任何一个都未包含在标准地下水流代码中使用的总控方程中,比如下文所述。然而,一些代码具有模拟流经裂缝和管道、含水层压实以及可变饱和流的选项。此外,地下水流代码可以与其他代码耦合或链接,以模拟多相流、溶质和热传输以及降雨和地表径流过程。我们在整个书中描述了模拟其他过程的选项;然而,深入涵盖复杂地下水过程模拟超出了我们文本的范围。

3.2 地下水流动的控制方程

3.2.1 假设

水文地质过程的数学表示必然需要简化假设。这些假设体现在总控方程中。下文推导的总控方程是地下水流模拟中最常用的形式。它代表了在达西定律下,恒定密度的单相流体(水)在连续多孔介质中的流动。

在第3.1节中,我们讨论了密度恒定的假设。单相流表示系统中只有水这一相存在。在高级问题中,其他相可能包括气体、非水相液体和油(第12.2节)。在连续多孔介质中,水通过相连的孔隙空间流动。等效多孔介质(EPM)是可以合理模拟为连续多孔介质的多孔介质。例如,一个具有良好连接的裂缝网络的碳酸盐含水层通常被模拟为EPM。当裂缝没有形成良好连接的网络时,可以使用特殊选项(第5.2节)和代码(第12.2节)来模拟通过单个裂缝或裂缝网络的导流流动。在模拟溶质输送时,可以使用双域方法来模拟溶质在裂缝和多孔岩矩阵之间的传输(第12.3节)。

3.2.2 推导

通过多孔介质的流动的总控方程通常是通过参考水通过一个多孔材料立方体的通量导出的,该立方体足够大,能够代表多孔介质的特性,但又足够小,以便体积内水头的变化相对较小(图3.1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值