地下水数值模拟凭借其计算方便、精度高、能较真实地刻画地下水流和溶质动态变化趋势等特点,已在地下水资源评价、溶质运移、海水入侵、矿坑涌水量预测等多个领域得到广泛应用[1-5]。
然而,由于水文地质参数存在预测结果不确定性,确定模型的不确定性对于分析模型模拟和预测的可靠性,分析影响模型模拟和预测功能的主要因素,进而以此指导实际工作,可以尽量减少不确定性因素的影响等具有十分重要的理论意义和实际意义,引起学者们的广泛关注[6-9]。
在地下水数值模型诸多的不确定性因素中,水文地质参数不确定性对模型运行结果影响较大,因而成为地下水数值模型不确定性研究的重点。
考虑到单一因子对结果影响的弊端,参数灵敏度分析方法[11-18]由局部灵敏度法发展到全局灵敏度法。全局灵敏度分析方法种类很多,如多元回归法、正交试验法、区域灵敏度分析(Regionalized Sensitivity Analysis,RSA)法、普适似然度不确定性估计(Generalized Likelihood Uncertainty Estimation,GLUE)法、Morris法、傅里叶幅度灵敏度检验(Fourier Amplitude Sensitivity Test,FAST)法、Sobol'法和扩展傅里叶幅度灵敏度检验(Extended Fourier Amplitude Sensitivity Test,EFAST)法等。然而,目前仅正交试验法[19]和Morris法[20-21]被应用到地下水数值模拟参数灵敏度分析中,这是因为其他灵敏度分析法多以Monte Carlo抽样和拉丁超立方抽样为基础,抽样次数达上千次甚至上万次,对于地下水数值模型来说工作量大,实用性不强。
正交试验法虽有效地减少了抽样次数,然而在多参数及多参数水平条件下,抽样次数对地下水数值模型来说工作量依然很大;Morris法通过给定参数的初始值,在初始值的基础上给予一定的扰动(如10%或20%),通过矩阵不同行的组合确定参数的灵敏度,虽然Morris法计算简单,但参数的初始值、扰动值会对结果产生较大影响。
均匀设计法是方开泰和王元于1978年共同提出的试验方法,该方法以数论中的一致分布理论为原理,着重考虑试验点在试验范围内均匀散布,以求通过最少的试验来获得更多的信息,特别适用于多因素、多水平的试验,目前该方法已在国防科技、国民经济与社会经济领域得到广泛应用。将均匀设计试验法引入到地下水数值模型的参数全局灵敏度分析中,不仅可以克服多参数及多参数水平条件下抽样次数多的局限,而且参数变化不再受限于初始值与扰动值,在模型参数全局灵敏度分析中应用性将会更强。本文以黑龙江省林甸县为研究区,利用GMS(Groundwater Model System)软件建立区域的地下水流数值模型,将均匀设计试验方法引入到模型的参数灵敏度分析中,在有效减少模型运行次数的条件下,对地下水流数值模型的参数灵敏度进行分析。
参数的敏感性也称敏感度,是地下水流数值模型计算结果对参数改变响应程度的度量指标[8]。
限于建模者在模型概化阶段对区域水文地质条件认识的局限性,以及在模型识别验证阶段调参的主观性,使得率定的模型参数具有很大的不确定性。数值模型的参数敏感性分析可将各个参数对地下水位变化的影响程度进行排序,从而识别出对模型计算结果影响较大参数[9]。敏感性分析采用目前比较通用的因子变换法,首先确定某一参数作为变量因子,同时保持其他参数不变[10],逐次运行模型后选定验证时段末刻(2011年6月30日),分别输出三个参数分区中典型观测井的地下水水位值,作为敏感性分析的评价依据。考虑到不同参数的单位不同而没有统一的量纲,为便于比较不同参数的敏感性大小,本次首先对三个参数分区内观测井的水位采用下面无量纲的公式进行计算,再对计算结果取绝对值后得到敏感度系数[11,12]
好的,理解了。您提供的公式如下:
理解了,您提供的公式如下:
式中:αi,k为水头H对第k个参数在第i个观测点上的敏感度系数;Hi为i点的水头;χk为第k个参数值;α*i,k为为αi,k的无量纲值。α*i,k绝对值越大,表明相应参数值的改变对模拟结果的影响越大。
您提供的公式存在一些语法错误。我注意到在分子部分的导数符号后面有一个额外的右括号。以下是修正后的公式:
请注意,我在公式的分母部分加上了"\text{其他部分}",因为您在提供的公式中并没有提到分母的其余部分。如果您有其他的公式部分,请将其添加到公式中。
综合分析研究区的水文地质条件,考虑到河流主要分布在第二参数分区,且河流对区内地下水的总补给量有限,故本次仅选取渗透系数、给水度及降水入渗补给系数进行敏感度分析。由于区内含水层岩性以砂砾石为主,渗透系数一般介于50~150m/d之间,给水度μ一般介于0.2~0.35之间[13]。
识别及验证后的渗透系数介于64~98m/d之间,则敏感性分析的渗透系数选取在初始赋值的±30%之间变化;率定后的给水度μ在0.25~0.29之间,则敏感性分析的给水度选取在初始赋值的±20%之间变化;相对于前两者,降水入渗补给系数多年月平均值变化不大,因此该系数无明显的制约条件,为便于分析,确定各个参数在率定值的±20%之间变化,参数敏感性分析结果见图5。从参数敏感性分析的计算结果可以看出:(1)地下水位对含水层渗透系数的变化最为敏感,其次是降水入渗补给系数,而对含水层给水度的敏感度最小。(2)各个参数在其率定值附近对称性增加或减少时,敏感度系数也呈现出对称性的变化规律,即参数变化幅度增大时,灵敏度系数也随之增大。(3)以最敏感的渗透系数为分析对象,对各分区敏感度进行对比,结果表明第2分区的渗透系数最敏感,其次是第1分区,这与其他两个参数敏感度对比分析的结果一致,说明第2分区参数的不确定性对地下水位影响最大,考虑到这两个分区主要为老莱河河谷地区,相对于南部高平原区其含水层岩性变异较显著,因此导致渗透系数及降水入渗补给系数等参数的变化对模拟结果的影响较大。