第14章 小波分析用于图像压缩


图像压缩的基本理论起源于20世纪40年代末香农(Shannon)的信息理论。香农定理表明,在不产生任何失真的前提下,通过合理的编码,对于每一个信源符号分配不等长的码字可以任意接近于信源的熵。在这个前提下出现了几种不同的无失真信源编码方法,如huffman编码、算术编码、词典编码等,这些方法可以应用于一幅数字图像,能获得一定的码率压缩。但是无失真压缩是很有限的,对较复杂的自然图像,压缩率一般不超过两倍。
本章从实践角度出发,首先介绍图像压缩的基本方法以及在工程实践中的压缩标准;其次,介绍有关MATLAB小波工具箱中的压缩函数,并且将不惜篇幅地列举压缩的算例供读者参考;最后,介绍利用小波分析进行图像压缩的综合实例。
学习目标:
(1)了解小波压缩的原理和方法
(2)熟练掌握MATLAB中小波压缩函数
(3)熟练掌握二维小波工具箱对图像压缩
14.1 图像压缩介绍
与图像去噪相似,压缩领域中由于小波的特殊优点,应用其进行压缩也受到了许多学者的重视,并获得了非常好的效果。
14.1.1 数据冗余
图像压缩所要解决的问题是尽可能减少表示数字图像需要的数据量。减少数据量的基本原理是除去其中的多余数据。以数学的观点来看,这一过程实际上就是将二维像素阵列变换为一个在统计上没有关联的数据集合。
这种变换在图像存储或者传输之前进行,在以后的某个时候,再对压缩图像进行解压来重构原图像或原图像的近似图像。
数据是用来表示信息的,如果不同的方法为表示给定量的信息使用了不同的数据量,那么使用较多数据量的方法中,有些数据必然是代表了无用的信息,或者是重复地表示了其他数据已经表示了的信息,这就是数据冗余的概念,它是数据压缩中的关键。
在数字图像压缩中,有3种基本的数据冗余:
(1)编码冗余;
(2)像素间冗余;
(3)心理视觉冗余。
如果能够减少或者消除其中的一种或者多种冗余,就能取得数据压缩的效果。
1.编码冗余
对图像编码需要建立码本以表达图像数据。这里的码本是指用来表达一定量的信息或者一组事件所需的一系列的符号(如字母、数字等)。其中对每个信息或时间所赋的码符号序列称为码字,而每个码字的符号个数称为码字长度。
我们以一幅256×256的8位灰度图为例:其每个像素的灰度值在0~255之间,设k表示0~255之间的灰度值,Nk表示灰度值为k的像素总个数,N为图像的总像素数,P(k)表示像素灰度值为k的像素出现的概率:P (k)=N (k)/N,k∈[0,255]。
设用来表示灰度值k的每个数值的比特数是L(k),那么为表示每个像素所需的平均比特数是:
最简单的二元码本成为自然码。对每个信息或事件所赋的码是从2m
 个m bit的二元码中选出来的一个。如果用自然码表示一幅图像的灰度值,则由上式得出平均码长为m。
根据上式,如果用较小的比特数表示出现概率较大的灰度级,而用较多的比特数表示出现概率较小的灰度级,就能达到数据压缩的效果。这种压缩常称为变长码。如果编码所用的码本不能使式达到最小,则说明存在编码冗余。
一般来说,如果编码时没有充分利用编码对象的概率特性就会产生编码冗余。
2.像素间冗余
在图像中,像素间的冗余通常称为空间冗余或者几何冗余。各像素之间的值可以比较方便地由其临近的像素表示出来,每个独立的像素所携带的信息相对较少。换句话说,单个像素对图像的视觉贡献有很多是冗余的,因为常能用基于其临近像素的值来推断。
为了减少图像中的像素冗余ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值