mann-kendall突变检验文献摘录

1资料与方法本

        本研究所采用的气象资料是国家气象信息中心整编的月值数据,经过质量控制和检查验证数据无误。

        研究将不同时间段的平均气温作为研究对象,采用Mann-Kendall非参数秩次统计检验法和最小二乘法等方法来分析气温变化的总趋势,并采用距平法和UFk统计量等方法分析气温变化的阶段性,采用滑动t检验和M-K非参数检验法来进行气温的突变分析。

在使用M-K检验进行趋势分析时,采用假设H0表示时间序列(x1、x2,…,xn)是数据样本独立同分布,不存在趋势;备择假设H1是双边检验:对于所有的i,j≤n,且i≠j,xi和xj的分布是不同的。检验的统计变量S的计算如下式:

其中,t为任意给定结点的时间范围,n为样本数,Zc为经过修正的Kendall符号检验统计量,收敛于标准正态分布,并通过下式计算:

在双边的趋势检验中,给定置信水平α,如果经过修正的Kendall符号检验统计量Zc≥标准正态分布的(1-α/2)分位数±Z1-α/2,就可以拒绝原假设H0,即在置信水平α下,时间序列数据存在明显的上升或下降趋势。

其中,变化趋势的大小可用Kendall倾斜度β来表示,其计算公式如下:

其中,1<j<i<n。当β>0时,表示上升的趋势,反之则表示下降的趋势。

除用于趋势分析外,M-K方法还可用于突变检验。对于具有n个样本量的时间序列x_1,x_2,…,x_n,可以构建一秩序列:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值