参考文献_MODFLOW

Alcolea, A., Carrera, J., Medina, A., 2006. Pilot points method incorporating prior information for solving the groundwater flow inverse problem. *Advances in Water Resources* 29 (11), 1678–1689. http://dx.doi.org/10.1016/j.advwatres.2005.12.009.

Anderson, M.G., Bates, P.D. (Eds.), 2001. *Model Validation: Perspectives in Hydrological Science*. John Wiley & Sons Ltd., London, UK, 512 pp.

Aster, R.C., Borchers, B., Thurber, C.H., 2013. *Parameter Estimation and Inverse Problems*, second ed. Elsevier Academic Press. 301 p.

ASTM (International), 2008. Standard guide for calibrating a groundwater flow model application D5981–96(2008). American Society of Testing and Materials, ASTM International, 6 p.

Bair, E.S., 2001. Models in the courtroom. In: Anderson, M.G., Bates, P.D. (Eds.), *Model Validation: Perspectives in Hydrological Science*. John Wiley & Sons Ltd., London, pp. 55–77.

Bair, E.S., Metheny, M.A., 2011. Lessons learned from the landmark “A Civil Action” trial. *Groundwater* 49 (5), 764–769. http://dx.doi.org/10.1111/j.1745-6584.2008.00506.x.

Belsley, D.A., Kuh, E., Welsch, R.E., 1980. *Regression Diagnostics: Identifying Influential Data and Source of Collinearity*. John Wiley, New York, 292 p.

Beven, K.J., 2005. On the concept of model structural error. *Water Science & Technology* 52 (6), 167–175. http://www.iwaponline.com/wst/05206/wst052060167.htm.

Beven, K.J., 2009. *Environmental Modelling: An Uncertain Future? An Introduction to Techniques for Uncertainty Estimation in Environmental Prediction*. Routledge, 310 p.

Beven, K., Young, P., 2013. A guide to good practice in modeling semantics for authors and referees. *Water Resources Research* 49 (8), 5092–5098. http://dx.doi.org/10.1002/wrcr.20393.

Bourgault, G., 1997. Spatial declustering weights. *Mathematical Geology* 29 (2), 277–290. http://dx.doi.org/10.1007/BF02769633.

Bravo, H.R., Jiang, F., Hunt, R.J., 2002. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. *Water Resources Research* 38 (8), 28-1–28-14. http://dx.doi.org/10.1029/2000WR000172.

Carrera, J., 1988. State of the art of the inverse problem applied to flow and solute transport equations. In: Custodio, E., et al. (Eds.), *Groundwater Flow and Quality Modelling*. D. Reidel Publication Company, pp. 549–583.

Carrera, J., Neuman, S.P., 1986. Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. *Water Resources Research* 22 (2), 199–210. http://dx.doi.org/10.1029/WR022i002p00199.

Certes, C., Marsily, G. de, 1991. Application of the pilot points method to the identification of aquifer transmissivities. *Advances in Water Resources* 14 (5), 284–300. http://dx.doi.org/10.1016/0309-1708(91)90040-U.

Cook, P.G., Wood, C., White, T., Simmons, C.T., Fass, T., Brunner, P.A., 2008. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. *Journal of Hydrology* 354 (1–4), 213–226. http://dx.doi.org/10.1016/j.jhydrol.2008.03.016.

Cooley, R.L., 1977. A method of estimating parameters and assessing reliability for models of steady-state groundwater flow, 1. Theory and numerical properties. *Water Resources Research* 13 (2), 318–324. http://dx.doi.org/10.1029/WR013i002p00318.

Cooley, R.L., 1979. A method of estimating parameters and assessing reliability for models of steady-state groundwater flow, 2. Application of statistical analysis. *Water Resources Research* 15 (3), 603–617. http://dx.doi.org/10.1029/WR015i003p00603.

Cooley, R.L., Sinclair, P.J., 1976. Uniqueness of a model of steady-state groundwater flow. *Journal of Hydrology* 31 (3–4), 245–269. http://dx.doi.org/10.1016/0022-1694(76)90127-X.

Cooley, R.L., Naff, R.L., 1990. *Regression Modeling of Ground-water Flow*. U.S. Geological Survey Techniques of Water-Resources Investigations, 03–B4, 232 p. http://pubs.usgs.gov/twri/twri3-b4/.

D’Agnese, F.A., O’Brien, G.M., Faunt, C.C., Belcher, W.R., San Juan, C., 2002. A Three-dimensional Numerical Model of Predevelopment Conditions in the Death Valley Regional Ground-water Flow System, Nevada and California. U.S. Geological Survey Water-Resources Investigations Report, 02-4102, 114 p. http://pubs.usgs.gov/wri/wri024102/.

Davis, K.W., Putnam, L.D., 2013. Conceptual and Numerical Models of Groundwater Flow in the Ogallala Aquifer in Gregory and Tripp Counties, South Dakota, Water Years 1985–2009. U.S. Geological Survey Scientific Investigations Report 2013-5069, 82 p. http://pubs.usgs.gov/sir/2013/5069/.

De Groot-Hedlin, C., Constable, S., 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. *Geophysics* 55 (12), 1613–1624. http://dx.doi.org/10.1190/1.1442813.

Doherty, J., 1990. MODINV–Suite of Software for MODFLOW Preprocessing, Postprocessing, and Parameter Optimization. User’s Manual: Australian Centre for Tropical Freshwater Research (various pagings).

Doherty, J., 2003. Groundwater model calibration using pilot points and regularization. *Groundwater* 41 (2), 170–177. http://dx.doi.org/10.1111/j.1745-6584.2003.tb02580.x.

Doherty, J., 2011. Modeling: Picture perfect or abstract art? *Groundwater* 49 (4), 455. http://dx.doi.org/10.1111/j.1745-6584.2011.00812.x.

Doherty, J., 2014a. *PEST, Model-independent Parameter Estimation—User Manual* (fifth ed., with slight additions). Watermark Numerical Computing, Brisbane, Australia.

Doherty, J., 2014b. Addendum to the PEST Manual. Watermark Numerical Computing, Brisbane, Australia.

Doherty, J., Christensen, S., 2011. Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. *Water Resources Research* 47 (12), W12534(21). http://dx.doi.org/10.1029/2011WR010763.

Doherty, J., Hunt, R.J., 2009a. Two statistics for evaluating parameter identifiability and error reduction. *Journal of Hydrology* 366 (1–4), 119–127. http://dx.doi.org/10.1016/j.jhydrol.2008.12.018.

Doherty, J., Hunt, R.J., 2009b. Response to comment on: Two statistics for evaluating parameter identifiability and error reduction. *Journal of Hydrology* 380 (3–4), 489–496. http://dx.doi.org/10.1016/j.jhydrol.2009.10.012.

Doherty, J., Hunt, R.J., 2010. *Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-model Calibration*. U.S. Geological Survey Scientific Investigations Report 2010-5169, 60 p. http://pubs.usgs.gov/sir/2010/5169/.

Doherty, J., Simmons, C.T., 2013. Groundwater modeling in decision support: Reflections on a unified conceptual framework. *Hydrogeology Journal*, 21(7), 1531–1537. http://dx.doi.org/10.1007/s10040-013-1027-7.

Doherty, J., Welter, D.E., 2010. A short exploration of structural noise. *Water Resources Research*, 46(5), W05525. http://dx.doi.org/10.1029/2009WR008377.

Doherty, J.E., Fienen, M.N., Hunt, R.J., 2010a. Approaches to Highly Parameterized Inversion: Pilot-point Theory, Guidelines, and Research Directions. U.S. Geological Survey Scientific Investigations Report 2010-5168, 36 p. http://pubs.usgs.gov/sir/2010/5168/.

Doherty, J.E., Hunt, R.J., Tonkin, M.J., 2010b. Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-parameter and Predictive-uncertainty Analysis. U.S. Geological Survey Scientific Investigations Report 2010–5211, 71 p. http://pubs.usgs.gov/sir/2010/5211/.

Emsellem, Y., Marsily, G. de, 1971. An automatic solution for the inverse problem. *Water Resources Research*, 7(5), 1264–1283. http://dx.doi.org/10.1029/WR007i005p01264.

Engl, H.W., Hanke, M., Neubauer, A., 1996. *Regularization of Inverse Problems*. Kluwer Academic, Dordrecht, The Netherlands, 321 p. ISBN 978-0-7923-4157-4.

Feinstein, D.T., Hunt, R.J., Reeves, H.W., 2008. Calibrating a big model: Strategies and limitations. In: *MODFLOW and More 2008: Ground Water and Public Policy*, Proceedings of the 9th International Conference of the International Ground Water Modeling Center, Colorado School of Mines, Golden, CO, pp. 430–434.

Fienen, M.N., 2013. We speak for the data. *Groundwater*, 51(2), 157. http://dx.doi.org/10.1111/gwat.12018.

Fienen, M., Hunt, R., Krabbenhoft, D., Clemo, T., 2009a. Obtaining parsimonious hydraulic conductivity fields using head and transport observations—A Bayesian geostatistical parameter estimation approach. *Water Resources Research*, 45(8), W08405(23). http://dx.doi.org/10.1029/2008WR007431.

Fienen, M.N., Muffels, C.T., Hunt, R.J., 2009b. On constraining pilot point calibration with regularization in PEST. *Groundwater*, 47(6), 835–844. http://dx.doi.org/10.1111/j.1745-6584.2009.00579.x.

Fienen, M.N., D’Oria, M., Doherty, J.E., Hunt, R.J., 2013. Approaches in Highly Parameterized Inversion: bgaPEST, A Bayesian Geostatistical Approach Implementation with PEST. U.S. Geological Survey Techniques and Methods. Book 7, Section C, (Chapter 9), 86 p. http://pubs.usgs.gov/tm/07/c09/.

Foster, I., 1995. *Designing and Building Parallel Programs*. Addison-Wesley Pearson Education, Upper Saddle River, New Jersey, 430 p. ISBN 978-0201575941.

Freeze, R.A., Cherry, J.A., 1979. *Groundwater*. Prentice-Hall, 604 p.

Freeze, R.A., Witherspoon, P.A., 1966. Theoretical analysis of regional groundwater flow, 1. Analytical and numerical solutions to the mathematical model. *Water Resources Research*, 2(4), 641–656. http://dx.doi.org/10.1029/WR002i004p00641.

Freeze, R.A., Massmann, J., Smith, L., Sperling, T., James, B., 1990. Hydrogeological decision analysis: 1. A framework. *Groundwater*, 28(5), 738–766. http://dx.doi.org/10.1111/j.1745-6584.1990.tb01989.x.

Gaganis, P., Smith, L., 2001. A Bayesian approach to the quantification of the effect of model error on the predictions of groundwater models. *Water Resources Research*, 37(9), 2309–2322. http://dx.doi.org/10.1029/2000WR000001.

Gardner, W.P., Harrington, G., Solomon, D.K., Cook, P., 2011. Using terrigenic 4He to identify and quantify regional groundwater discharge to streams. *Water Resources Research*, 47(6), W06523(13). http://dx.doi.org/10.1029/2010WR010276.

Gómez-Hernández, J.J., 2006. Complexity. *Groundwater*, 44(6), 782–785. http://dx.doi.org/10.1111/j.1745-6584.2006.00222.x.

Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. *Princeton University Bulletin*, 49–52.

Haitjema, H., 2006. The role of hand calculations in ground water flow modeling. *Groundwater*, 44(6), 786–791. http://dx.doi.org/10.1111/j.1745-6584.2006.00189.x.

Haitjema, H.M., 2015. The cost of modeling. *Groundwater*, 53(2), 179. http://dx.doi.org/10.1111/gwat.12321.

Hill, M.C., 1992. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, groundwater flow model using nonlinear regression. U.S. Geological Survey Open-File Report 91-484, 358 p. http://pubs.er.usgs.gov/publication/ofr91484.

Hill, M.C., 2006. The practical use of simplicity in developing ground water models. *Groundwater*, 44(6), 775–781. http://dx.doi.org/10.1111/j.1745-6584.2006.00227.x.

Hill, M.C., Tiedeman, C.R., 2007. *Effective Groundwater Model Calibration—With Analysis of Data, Sensitivities, Predictions, and Uncertainty*. Wiley-Interscience, Hoboken, NJ, 455 p.

Himmelblau, D.M., 1972. *Applied Nonlinear Programming*. McGraw-Hill, New York, 477 p.

Hunt, R.J., Anderson, M.P., Kelson, V.A., 1998. Improving a complex finite difference ground water flow model through the use of an analytic element screening model. *Groundwater*, 36(6), 1011–1017. http://dx.doi.org/10.1111/j.1745-6584.1998.tb02108.x.

Hunt, R.J., Zheng, C., 1999. Debating complexity in modeling. *Eos* (Transactions, American Geophysical Union), 80(3), 29. http://dx.doi.org/10.1029/99EO00025.

Hunt, R.J., Krabbenhoft, D.P., Anderson, M.P., 1996. Groundwater inflow measurements in wetland systems. *Water Resources Research*, 32(3), 495–507. http://dx.doi.org/10.1029/95WR03724.

Hunt, R.J., Feinstein, D.T., Pint, C.D., Anderson, M.P., 2006. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, northern Wisconsin, USA. *Journal of Hydrology*, 321(1–4), 286–296. http://dx.doi.org/10.1016/j.jhydrol.2005.08.005.

Hunt, R.J., Doherty, J., Tonkin, M.J., 2007. Are models too simple? Arguments for increased parameterization. *Groundwater*, 45(3), 254–261. http://dx.doi.org/10.1111/j.1745-6584.2007.00316.x.

Hunt, R.J., Luchette, J., Schreuder, W.A., Rumbaugh, J.O., Doherty, J., Tonkin, M.J., Rumbaugh, D.B., 2010. Using a cloud to replenish parched groundwater modeling efforts. *Rapid Communication for Groundwater*, 48(3), 360–365. http://dx.doi.org/10.1111/j.1745-6584.2010.00699.x.

Hunt, R.J., Zheng,

 C., 2007. Groundwater Management Modeling with MODFLOW: A Practical Guidebook. *Groundwater Monitoring & Remediation*, 27(1), 92–93. http://dx.doi.org/10.1111/j.1745-6584.2007.00201.x.

Tikhonov, A.N., 1963b. Regularization of incorrectly posed problems. *Soviet Mathematics Doklady*, 4, 1624–1637.

Tikhonov, A.N., Arsenin, V.Y., 1977. *Solutions of Ill-Posed Problems*. Halstead Press-Wiley, New York, 258 p.

Tonkin, M.J., Doherty, J., 2005. A hybrid regularized inversion methodology for highly parameterized models. *Water Resources Research*, 41(10), W10412. http://dx.doi.org/10.1029/2005WR003995.

Tonkin, M.J., Doherty, J., 2009. Calibration-constrained Monte-Carlo analysis of highly parameterized models using subspace techniques. *Water Resources Research*, 45(12), W00B10. http://dx.doi.org/10.1029/2007WR006678.

Townley, L.R., 2012. Calibration and sensitivity analysis. In: Barnett, B., Townley, L.R., Post, V., Evans, R.E., Hunt, R.J., Peeters, L., Richardson, S., Werner, A.D., Knapton, A., Boronkay, A. (Eds.), *Australian Groundwater Modelling Guidelines*, Waterlines Report 82. National Water Commission, Canberra, pp. 57–78, 191 p. ISBN 978-1-921853-91-3.

Voss, C.I., 2011. Editor’s message: Groundwater modeling fantasies—Part 1, adrift in the details. *Hydrogeology Journal*, 19(7), 1281–1284. http://dx.doi.org/10.1007/s10040-011-0789-z.

Welter, D.E., Doherty, J.E., Hunt, R.J., Muffels, C.T., Tonkin, M.J., Schreuder, W.A., 2012. Approaches in Highly Parameterized Inversion: PEST++, A Parameter ESTimation Code Optimized for Large Environmental Models. U.S. Geological Survey Techniques and Methods, 7(C5), 47 p. http://pubs.usgs.gov/tm/tm7c5/.

Yager, R.M., 1998. Detecting influential observations in nonlinear regression modeling of groundwater flow. *Water Resources Research*, 34(7), 1623–1633. http://dx.doi.org/10.1029/98WR01010.

Yager, R.M., 2004. Effects of model sensitivity and nonlinearity on nonlinear regression of groundwater flow. *Groundwater*, 42(2), 390–400. http://dx.doi.org/10.1111/j.1745-6584.2004.tb02687.x.

Yeh, W., 1986. Review of parameter identification procedures in groundwater hydrology: The inverse problem. *Water Resources Research*, 22(2), 95–108. http://dx.doi.org/10.1029/WR022i002p00095.

Yeh, W.W-G., Tauxe, G.W., 1971. Optimal identification of aquifer diffusivity using quasilinearization. *Water Resources Research*, 7(4), 955–962. http://dx.doi.org/10.1029/WR007i004p00955.

Yao, Y., Zheng, C., Liu, J., Cao, G., Xiao, H., Li, H., Li, W., 2014. Conceptual and numerical models for groundwater flow in an arid inland river basin. *Hydrological Processes*, 29(6), 1480–1492. http://dx.doi.org/10.1002/hyp.10276.

Zheng, C., Bennett, G.D., 2002. *Applied Contaminant Transport Modeling*, second ed. John Wiley & Sons, New York, 621 p.

Zhou, H., Gómez-Hernández, J.J., Liangping, L., 2014. Inverse methods in hydrogeology: Evolution and recent trends. *Advances in Water Resources*, 63, 22–37. http://dx.doi.org/10.1016/j.advwatres.2013.10.014.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值