PEST(参数估计)工作流
Visual MODFLOW Flex提供了与知名的参数估计和预测分析程序PEST(由Watermark Numerical Computing的John Doherty博士开发)无缝对接的界面。
本节提供了使用Visual MODFLOW Flex 设置、运行和解释参数估计/预测分析模拟的说明。
此外,本章提供了PEST所需的输入参数和设置的简要描述。
关于PEST的算法、参数、输入文件和其他选项的详细描述可以在PEST用户文档中找到,该文档可从www.PESTHomepage.org访问。
Before you start |
鼓励您在使用Visual MODFLOW Flex之前熟悉PEST的概念和应用。在此投入的时间将使您在参数估计方面的经验更加富有成效,并可能帮助您克服首次运行PEST时可能遇到的任何困难。 Note要使用Visual MODFLOW Flex中的PEST模块,您必须拥有专业版或高级版的许可证。 |
Visual MODFLOW支持PEST程序的校准和预测分析功能,它允许您利用地下水流和污染物传输模拟的结果运行参数估计(即观测可以包括水头、浓度和地下水通量)。
对传输的支持将在将来的版本中添加。
Acknowledgements:
Excerpts from the following publications are used throughout this documentation:
•Using Pilot Points to Calibrate a MODFLOW/MT3D Model, Doherty (2008)
•PEST: Model-Independent Parameter Estimation, User Manual: 7th Edition, Doherty (2019)
•Addendum to the PEST Manual, June 2012
Suggested References:
Several USGS publications are also available on PEST. See:
•Approaches to Highly Parameterized Inversion: a Guide to Using PEST for Groundwater Model Calibration: USGS Scientific Investigations Report 2010–5169: Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration
•Approaches to Highly Parameterized Inversion: a Guide to Using PEST for Model Parameter and Predictive Uncertainty Analysis" Scientific Investigations Report 2010-5211: Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis
•Approaches to Highly Parameterized Inversion: Pilot Point Theory, Guidelines and Research Directions USGS Scientific Investigations Report 2010-5168: Approaches to Highly Parameterized Inversion: Pilot-Point Theory, Guidelines, and Research Directions
加载 PEST 工作流
PEST 工作流程可以从数值工作流程的“选择运行类型”步骤启动,如下所示;只需在主窗口中点击 PEST 按钮。
在尝试运行参数估计模拟之前,请确保您的模型符合以下要求:
• 模型能够成功运行(收敛)并产生有意义的结果。模型应该在各种输入参数条件下提供解决方案。参数估计既是一门艺术,也是一门科学,因此,它应该仅用于辅助您理解系统的努力。
• 模型具有一个或多个(最好是更多)观测值,可用于与计算结果进行比较。观测值可以是在模型中离散点处测量或估算的水头或浓度的形式,也可以是一个或多个网格单元中测量或估算的地下水通量的形式。
• 在进行全面的 PEST 运行之前,建议您进行敏感性分析。在敏感性分析中,单独更改参数值以确定对模型校准和预测的影响。
结果表明,哪些参数变化可能对模型结果产生显著影响(这些是敏感参数),哪些参数变化对模型结果几乎没有影响(这些是非敏感参数)。
这应该帮助您正确选择要包括在 PEST 运行中的参数,因为您应该更专注于敏感参数,而不是非敏感参数。
• 观测时间(对于水头)位于数值模拟的起始/停止时间内。
如果您从 Visual MODFLOW Classic 导入了模型,请确保在将项目加载到 Visual MODFLOW Flex 之前在 Visual MODFLOW Classic 中定义了适当的起始日期。
如果您从概念模型工作流生成了数值模型,请确保基于您定义的水头观测时间,模型目标中的起始日期是合适的。
Setting up a PEST Run
PEST requires several inputs and a number of steps that must be completed in a specific order. Fortunately, Visual MODFLOW Flex provides the PEST GUI in a workflow, that guides you through the sequential steps and necessary inputs, running PEST, and analyzing the results:
•Define Observations and Assign Weights
•Define Parameters (Property Zones, Boundary Conditions)
•Select Regularization (None, Tikhonov, SVD Assist)
•Define PEST Run Settings and Run PEST
PEST需要多个输入以及必须按照特定顺序完成的多个步骤。幸运的是,Visual MODFLOW Flex在工作流中提供了PEST图形用户界面(GUI),引导您完成顺序步骤和必要的输入,运行PEST,并分析结果:
• 定义观测点和分配权重
• 定义参数(属性区域,边界条件)
• 定义样点
• 定义克里金半变异函数
• 选择正则化(无,Tikhonov,SVD辅助)
• 定义PEST运行设置并运行PEST
• 运行灵敏度分析
• 分析结果
• 更新模型输入
Define Observations
当使用PEST来协助校准模型时,它的任务是最小化一个由符号Φ表示的目标函数。该目标函数包括计算()和观测(
)系统响应之间加权平方偏差的总和,最终是一种定义参数(pj)的函数。计算值与观测值之间的差异被称为残差,用以下方程表示:
在最简单的 PEST 运行中,使用以下方程计算目标函数(Φ):
在地下水模型的情况下,这些系统响应通常是空间某点处的水头、空间某点处的浓度,或者指定区域的地下水流动。
在定义观测步骤中,您将看到所有可用的水头观测的列表,如下图所示:
观测值被分配一个默认权重为1.0,这意味着残差将不会被修改,并且所有观测将被平等对待。
我们希望 PEST 实现以下目标:
- 给予更可信测量更高的权重
- 在预测重要性较高的区域,给予更高的优先级
- 减少由更密集数据引入的偏差(如果适用)
- 对具有不同单位的观测给予相等权重(例如,水头 vs. 通量 vs. 浓度)
权重因子通常用于标准化不同类型的观测。例如,在同一 PEST 运行中包括水头和通量观测时,通量残差通常比水头残差高得多。例如:
- 一组单元的通量残差可能为 +/- 1000 m3/day
- 单个单元的水头残差可能为 +/- 1m
PEST 通过对这些残差的平方求和来计算目标函数,导致通量观测残差的数量级远高于水头残差。因此,PEST 将更注重最小化通量残差,对水头残差的关注较少,这很可能是模型师不希望看到的。
解决方案是用户定义的加权因子(wi)。
我们使用小于1.0的权重来减小通量误差的幅度,以便使其与水头误差可比。出于同样的原因,浓度目标经常出现类似的问题。能够使用权重来解决各种常见的校准问题使目标更加实用。
Settings
如果您点击观测数据表格上方的【设置】按钮,您可以调整时间外推限制;此值由 PEST 用于搜索与计算的 MODFLOW 输出时间进行比较的最近观测时间。值越高,越有可能找到匹配 MODFLOW 输出时间的观测时间。默认值为 100(项目时间单位)。
请注意:时间外推限制的数值对于与稳态模型匹配观测数据非常重要,因为比较的时间是稳态模拟周期。如果您的稳态模拟周期特别短(例如1天)或特别长(例如10年),则您的PEST分析可能没有任何有效的观测数据(或少于预期的数量),这取决于模型开始日期与观测日期之间的关系。
Define Parameters
在“定义 PEST 参数”步骤中,选择您希望在 PEST 运行中包括的模型输入类型。
Parameter Settings
在窗口顶部的表格中,选择您想要包括的参数;Visual MODFLOW Flex目前支持以下参数:
- 导数(Kx 和 Kz)
- 存储(Ss 和 Sy)
请注意:`Ss` 和 `Sy` 应仅在瞬时 MODFLOW 运行中包括。
此参数列表将在将来的版本中扩展,以包括来自流动和传输模型的更多参数。
在“使用”列中选择复选框,以包括此参数区域。
Tied To
•Tied: 参数值与另一个参数的值相连(关联),在这种情况下,该参数在参数估计过程中只起到有限的作用。如果选择“tied to”选项,则可以从下拉列表中选择父参数。
请注意:您只能将参数与在 PEST 运行中已选择/包含的其他参数关联。PEST 不允许将参数与固定参数或已与其他参数关联的参数关联。
如果一个参数与父参数关联,那么在估计过程中,该参数会“依附”在父参数上。通过这种方式,参数的初始值与其父参数的比率在整个估计过程中保持不变。
Transformation
在许多情况下,PEST(参数估计软件)所基于的线性假设在某些参数进行对数变换时更为有效。这意味着对某些参数进行对数变换往往能够决定估计过程的成败。然而,在估计过程中可能变为零或负值的参数不应进行对数变换。
参数转换字段控制参数值在优化过程中的转换方式。有三种转换选项:
• Fixed(固定):参数值固定,不参与参数估计过程。
• Log(对数):参数将被对数变换(即优化参数的对数值而非参数的“真实”值)。
• None(无):不进行任何变换(即调整“真实”参数值)。
如果参数进行对数变换,则协方差、相关系数和特征向量值将指代参数的对数。然而,参数的估计值和置信区间将指代未经变换的参数。
如果固定一个参数,其值将被固定为初始值,并且不会成为估计过程的一部分。
Parameter Zone Settings
在窗口底部的表格中,选择您希望包括的参数区域;默认情况下,将包括所选参数类型的所有区域。 "Value" 列指示每个区域的值;在您在一个区域中分布参数值的情况下,您将在此列看到 "Distributed"。 "Minimum" 和 "Maximum" 是参数区域的下限和上限。
下限和上限应谨慎选择;例如,如果您知道一个区域表示沙砾含水层,则为沙砾含水层的电导率定义实际的下限和上限。默认值分别为 1E-15 和 1E+30。对于固定和连接参数,下限和上限将被忽略。如果更新的参数值超出其范围,PEST 会暂时将该参数保持在其边界值。
Updating Parameter Values after a PEST Run
如果您已经完成了一次 PEST 运行并返回到“定义参数”步骤进行更改(例如添加/移除区域或调整最小/最大值),您需要点击工作流工具栏上的 [应用] 按钮,并继续执行“定义试点”步骤,以及重新生成“定义克里金变程图”步骤,以更新相应的输入文件。
Define Pilot Points
下一步是定义试点。
导航点是简单的XY坐标点,每个参数都有一个初始值,你希望PEST来估计。导航点可以从.TXT文件、XLS、.SHP文件导入,也可以在2D环境中手动分配。下图显示了导航点位于导电区域之上的示例。
一般步骤如下:
• 从模型树中选择所需的点对象
• 单击
("下一步" 按钮)以添加这些点。
• 选择点所代表的参数区域(例如,Kx-Zone1 或 Kz-Zone5)。
在窗口的下半部分的表格中,指定哪些试点是“固定”的。
固定的试点是那些具有已知初始值且在 PEST 运行期间不会调整的试点,例如,您拥有抽水/斯拉格试验数据的点。
对于所有其他点,它们的初始值来自特定点所在的属性区。
Visual MODFLOW Flex 处理这些“固定”试点的方式如下:
在 PEST 控制文件中,
• 这些试点参数使用“固定”转换,上表中定义的初始值将出现在每个点的旁边;和
• 这些固定参数的正则化信息不包括在 * 先验信息部分下。
这仅适用于在 PEST 运行中使用正则化选项之一的情况。
完成后,请确保为包括的其他参数区域重复这些步骤。
注意:
|
Theory
使用传统的模型校准技术,校准过程将使用与属性区域相关的一个参数,并调整这些参数,直到模型结果与现场观测的拟合尽可能好。
如果基于这些区域获得的拟合度不可接受,那么在模型领域引入额外的区域,位置是模型师认为它们会“最有益的”;然后将重新进行参数化过程,包括新的参数。
如果仍然无法获得良好的拟合度,那么将引入更多的区域。
该过程将持续进行,直到模型结果与现场观测之间的拟合是可接受的。
这种方法存在一些缺点。其中包括以下:
- 该程序相当繁琐和缓慢。
- 在像当前这样的情况下,地质制图对在哪里放置额外区域提供不了指导;因此,模型师使用这个过程达到的区域的最终分布可能是主观的和不唯一的。
- 在本研究区域通过分段均匀性区域的方式表征地质异质性与冲积材料的性质不协调;因此,最终决定的任何分区模式将不“看起来正确”;它只能在这样一个分区方案比完全忽略地质异质性更好的基础上辩护。
- 作为表征地质异质性的方法,分段常数缺乏探索小尺度地质变异对模型预测不确定性的影响所需的灵活性。
为了解决这些问题,模型领域内传导率的分布将由一组指导点描述。
将引入多个这些指导点到模型领域,并要求 PEST 估计每个指导点处含水层的传导率。
这些“点传导率”然后将通过克里金插值空间插值到模型领域内的所有活动单元。
因此,在估计指导点处的传导率值时,PEST 实际上将参数值分配给整个模型领域。
可以将单个指导点分配给模型领域内的不同区域。
只有分配给特定区域的那些点才能在使用克里金插值过程计算该区域内的传导率值时使用。
此外,Kriging 基于的半变异函数在每个区域中可以不同,反映了在每个地质单元内预期的地质或异质性水平的差异。
请注意,如果仅将一个指导点分配给特定区域,则将该区域视为均匀。
传统智慧规定,在参数估计过程中涉及的参数数量应尽量减少。
但是,当将指导点与 PEST 的新正则化模式结合使用时,往往相反。
PEST 的正则化功能防止了在解决过度参数化的反问题时经常出现的数值不稳定性。
此外,多余的指导点使 PEST 能够在模型结果和现场观测之间获得更好的拟合。
General Tips
关于使用试点的一般建议(摘自 http://www.pesthomepage.org/PEST_FAQ.php):
• 没有必要过于简约;尽量使用尽可能多的试点。让 PEST 进行正则化处理(使用奇异值分解(SVD)、Tikhonov 正则化、SVD 辅助或将它们一起使用)。
• 在模型领域中,信息密度较高的地方使用更多的试点(例如,观测井较多的地方)。
• 尝试在地下水流方向上在测量井之间放置代表水力传导率的试点。在代表比存储系数的测量井上放置试点。
• 确保在测量井和任何下游边界之间放置水力传导率试点,因为这些井和边界之间材料的水力传导率决定了这些井中的水头。
• 不要在最终试点图案中留下大的间隙。
• 如果使用优选值正则化(即选择了首选值 Tikhonov 正则化),考虑使用协方差矩阵而不是权重来处理先验信息方程。参见 Groundwater Data Utilities 套件中的 PPCOV 实用工具。
• 如果您绝对确定在小于 x 的距离内不会出现任何异质性,那么请不要将试点放置得比距离 x 更近。
Define Kriging Variograms
一旦生成了试点数据,下一步就是指定将用于在 PEST 校准过程中插值试点数据的克里金设置,用于这些区域。
主要涉及定义适当的变程函数。
变程函数还被 PEST 用于计算正则化权重,因此是该过程的重要组成部分。
Visual MODFLOW Flex会为每个参数区域“结构”创建一个默认的变异图。
Visual MODFLOW Flex使用普通克里金插值来插值各个点之间的数据。该方法具有以下优点:
• 数值效率高
• 尊重给定点的数值
• 正则化和插值可以基于相同的变异图进行
唯一的缺点是需要定义一个变异图才能有效,并且每个参数+区域必须有自己的变异图。
在Visual MODFLOW Flex中,为每个参数+区域提供了一个默认的变异图。建议的默认值为:
• 指数变异图类型
• A = 模型域的长度或宽度(以较大者为准)的约20%;典型范围为20-70%
• 各向同性 = 1(均匀)
• Nugget = 0
从树中选择所需的参数区域,并提供必要的变异图参数。
请注意:由于高斯变异函数可能导致插值的属性字段超过或低于任何控制点(Doherty, 2008a)分配的最高/最低属性值,因此不建议在 PEST 中使用。
Theory
使用试点进行空间插值
在表征水力特性的空间分布中使用试点必须伴随着一种机制,该机制通过试点分配的水力特性值进行空间插值以至于能够适应有限差分网格的单元。
空间插值是通过克里金算法实现的。
克里金是一种基于地统计学的空间插值方法。
地统计学的基石是半变异函数;半变异函数描述了与两个点相关的水力特性值(或任何其他类型的数据)在距离函数的作用下有多大可能不同。
将克里金作为空间插值的基础之一的好处之一是,在进行插值到特定网格单元的水力特性值之前,试点处的水力特性乘以的因子在总和计算中是独立的。
因此,可以在实际插值过程之前提前计算与有限差分网格每个单元相关的一组“克里金因子”。
由于模型由 PEST 反复运行,因此不必在每次运行模型时重复计算克里金因子,这可以节省完成整体参数估计过程所需的时间。
计算克里金因子是由 PPK2FAC 程序执行的。
这些基于的半变异函数的克里金因子在“结构文件”中提供给 PPK2FAC。
这样的文件是 struct.dat。
使用屏幕编辑器查看此文件。
有关此文件规格的详细信息,请参阅地下水数据实用工具的文档。
请注意,分配给只有一个试点的区域的半变异函数并不重要;因为每个区域只有一个试点分配给它们,所以这些区域内的所有单元将被分配相同的插值值(与相应的试点相同),而不考虑半变异函数。
还请注意,对于出现在文件 struct.dat 中的所有结构,TRANSFORM 变量均设置为“log”。
因此,出现在这些结构中的每个半变异函数都必须与相关水力特性的对数的空间分布相关。
这符合地下水文献中大多数研究的事实,这些研究将传导率和/或水力传导率视为区域变量,并指出其分布更好地由对数半变异函数描述,而不是由基于原始特性值的半变异函数描述。
Select Run Type
在这一步,您可以选择两种类型的 PEST 运行:
• 参数估计运行 - 用于基于您的观察找到最佳参数集
• 灵敏度分析运行 - 用于计算参数的灵敏度,这将帮助您确定哪些参数对模型结果具有影响或不具有影响(基于当前参数的值)。
|
Run Sensitivity Analysis
敏感性分析是评估地下水模型可能产生的结果范围的第一步。
在敏感性分析中,逐个更改参数值以确定对模型校准和预测的影响。
结果表明哪些参数变化对模型结果有显著影响(这些是敏感参数),哪些参数变化对模型结果几乎没有影响(这些是非敏感参数或不敏感参数)。
这应该帮助您正确选择要包含在PEST运行中的参数,因为您应该更关注敏感参数,而不是不敏感参数。
当您进行敏感性分析时,将出现以下窗口:
在"PEST控制文件"选项卡下,您可以看到PEST控制文件已经自动为您生成,并配置为进行灵敏性运行的适当设置。
点击
启动 PEST 运行;您应该在 DOS 窗口中看到 PEST 的进展。
运行完成后,您将看到工作流窗口中添加了几个新的标签。
•Record file (.REC)
•Sensitivities for Observations - Composite Sensitivities (.SEO)
•Sensitivities for Parameters (.SEN)
•Residuals (.RES)
• 记录文件 (.REC)
• 观测值敏感性 - 组合敏感性 (.SEO)
• 参数敏感性 (.SEN)
• 残差 (.RES)
选择适当的标签页,您将看到参数和观测值的敏感性,以及其他有用的 PEST 运行结果。
Select Regularization
At this step, choose which regularization options you want to use in the PEST Run.
在这一步骤中,选择您想在 PEST 运行中使用的正则化选项。
• 无正则化
• Tikhonov 正则化
• SVD 辅助
Theory
使用 pilot points 的一个巨大优势是我们可以在模型领域内分布大量这些点,然后要求 PEST 自己找到研究区域内传导率必须大于或小于平均值的区域,以确保模型输出与现场测量之间有良好的一致性。
如果我们仅基于区域对模型领域进行参数化,可能无法将这些区域放置在校准过程能够正确推断出这种异质性的存在或范围的位置。
将正则化引入到校准过程中有两个目的。
首先,它为参数估计问题带来了高度的数值稳定性,否则这个问题将极易受到正常矩阵的有害影响(当检查 `hcal.rec` 时,您可能已经注意到 PEST 由于正常矩阵的奇异性而无法计算任何参数统计信息)。
其次,如果正则化约束被适当定义,模型校准可以采用“除非有证据证明相反,均匀一致”的理念进行;也就是说,尽管 PEST 可以使用其所拥有的参数数量,但它会使模型领域内的每个区域尽可能地均匀,以在估计的水力特性分布方面引入异质性,仅在必要时才允许模型输出与现场数据之间达到良好的拟合。因此,校准过程引入的任何异质性都是“因为必须有”。
在许多建模背景下,这种模型校准哲学具有很大的直观吸引力,允许模型师使用区域来表征模型领域内某些水力特性的分布,同时消除由区域块参数恒定性区域化的划分所带来的不灵活性。
可以将成对参数值之间的关系作为先验信息方程引入到校准过程中。分配给这些先验信息方程的权重可以相同。
或者,如果权重与各自 pilot points 之间距离的半方差的倒数成正比,那么可以证明这与变程图中包含的地统计特征相一致。
这个表征的简短说法是:“两点越靠近,它们的水力特性越可能相同”。
通过根据半方差的倒数计算权重,我们更强烈地对距离更近的点执行“零差异”条件,而对于距离较远的点执行较弱的“零差异”条件。
在这种模式下运行时,PEST 控制文件需要一些控制变量,除了在 PEST 以“参数估计”模式运行时需要的变量之外。
其中之一是 PHIMLIM。
这指定了在当前优化过程中允许发生的模型与测量不匹配的程度。
由于实现良好的模型与测量匹配和同时执行均匀性约束可能对参数值提出冲突的要求,必须达成两者之间的妥协。
用户通过设置最大模型与测量不匹配,即通过“测量目标函数”表达的 PHIMLIM,确定“妥协水平”。
在没有强制执行正则化约束的情况下可以实现的目标函数的最大值,PHIMLIM 的最大允许值应稍高于它。
在参数估计过程中包含的每个先验信息方程都必须分配一个权重。
正如上面所讨论的,权重是根据模型区域的地理统计信息(或假设的信息)计算的。
如果观测或先验信息方程用于正则化目的,则将其分配到观测组“regul”中。
作为其正则化功能的一部分,PEST 在优化过程的每次迭代中调整分配给该组所有成员的权重;然而,在该组内的相对权重值保持不变。
“正则化权重因子”是在每次优化迭代中计算的,以尊重用户提供的 PHIMLIM 值,作为当前情况下可容忍的模型与测量不匹配的最大值。用户需要提供一个初始的正则化权重因子。
No Regularization
如果选择“无正则化”选项,则在运行 PEST 之前无需调整其他设置。您将看到 PEST 控制文件,您可以在其中编辑/调整 PEST 目标函数目标、迭代次数等数值。请参考 PEST 用户手册以了解这些参数的解释。
Tikhonov Regularization
当您选择Tikhonov正则化时,将自动生成用于支持此功能的PEST控制文件。
选择【生成Tikhonov正则化】按钮以选择正则化类型。
• 首选均匀(平滑度):先验信息方程将飞行点相互关联。彼此相邻的飞行点应具有相近的值;系统只会引入必要的异质性,异质性的水平由相关的半变异函数控制。
• 首选值:先验信息方程将飞行点与其初始值相关联。PEST将尽量找到与初始飞行点值尽可能接近的值。
当您完成后,请继续进行 [运行 PEST] 步骤以开始 PEST 运行。
SVD Assist
Theory
与 Tikhonov 正则化不同,Tikhonov 正则化通过向校准过程添加信息以实现数值稳定性,而子空间方法通过从校准过程中减去参数和/或参数组合来实现数值稳定性(Aster 等人,2005年)。
由于减法的结果,校准过程不再需要估计根据校准数据集无法估计的个别参数或相关参数的组合。这些组合是通过加权雅可比矩阵(Doherty 和 Hunt,2010年)的奇异值分解(SVD)自动确定的。
当 PEST 实现“SVD 辅助”参数估计时,它仅计算一次全局雅可比矩阵。然后,它将参数空间分解为可估计和不可估计的参数组合。然后,它重新制定整个校准问题,从那时起,仅估计“超参数”。只需要估计与校准解空间的维数相同的超参数,或者只需要定义与您有计算资源用于估计的数量相同的超参数。通过使用超参数,您可以在相对较小的运行时间负担下获得高度参数化反演的所有好处。您的模型可以具有数百甚至数千个参数,但可以通过每次迭代运行数十次来适应计算负担。
单击工具栏上的 [创建 SVD 辅助运行] 按钮,如下所示。
以下将出现设置对话框。对于 SVD Assist,您必须提供要使用的超参数数量。请参考 PEST 手册以获取推荐的参数值集。
点击设置窗口中的“确定”后,用于SVD Assist运行的PEST控制文件将按如下所示填充。
完成后,继续进行[运行 PEST] 步骤以开始 PEST 运行。
Run PEST
在这一步骤中,您可以运行 PEST 检查并启动/停止 PEST 运行。
在启动 PEST 运行之前,运行 PEST 检查是一个好主意。这个 PEST 实用程序将检查所有输入文件,确保它们符合一组最低标准。
点击
在工具栏上找到"Run PEST"按钮。如果存在错误,您将收到通知。(如果只有警告,您将不会收到通知)
点击“Run PEST”按钮启动 pest.exe。进度应该显示在一个DOS窗口中。
一旦 PEST 完成,您应该在 PEST 运行日志选项卡下看到一个确认消息,表明 PEST 运行是否成功。点击
(下一步)继续到分析结果步骤。"
Analyze Results
•Record file (.REC)
•Sensitivities for Observations (.SEO)
•Sensitivities for Parameters (.SEN)
•Residuals (.RES)
PEST运行成功后,您可以分析结果;Visual MODFLOW Flex提供到PEST输出文件的链接:
• 记录文件(.REC)
• 观测灵敏度文件(.SEO)
• 参数灵敏度文件(.SEN)
• 残差文件(.RES)
分析结果工作流窗口包括几个选项卡,显示来自 PEST 运行的输出文件(即 .REC、.SEO、.SEN 和 .RES 文件)。
.REC 选项卡显示 PEST 运行的记录文件。记录文件包括整个参数估计过程的详细记录,列出参数数量、参数组、观测值、参数定义/设置、控制设置、初始条件等。记录文件还列出了模型每次迭代的参数值。
.SEO 选项卡显示观测灵敏度文件。该文件记录每个单独观测点/时间相对于参与 PEST 运行的所有参数的灵敏度。对于每个观测点/时间,列出了观测值和模型值,以及每个观测点/时间相对于估计参数的综合灵敏度。
.SEN 选项卡显示参数灵敏度文件。该文件记录每个单独参数相对于参与 PEST 运行的所有观测的灵敏度。对于 PEST 运行的每次迭代,列出了参数值和灵敏度。
最后,.RES 选项卡显示残差文件。该文件显示基于 PEST 实现的最佳结果(即具有最低 Φ(phi)值的模型迭代)的每个观测点的测量值和模型值。此外,显示了每个观测的残差值。
PEST 输出文件可以导出到 Excel 电子表格中,以便进行进一步的处理和制图。单击
按钮用于指定Excel文件的输出名称/位置;结果将被分隔到独立的工作表中,以便便于分析。
Save PEST Parameters as New Inputs
在进行 PEST 运行的最后(除了灵敏度分析之外),如果调整后的参数合理,您可能希望将最终参数保存为新模型运行的输入。
点击"使用PEST结果更新模型"按钮。
Visual MODFLOW Flex将保存调整后的模型参数在同一项目中的新模型运行中。这个新的模型运行将显示在Model Explorer中,位于最近的模型运行下方。您必须翻译并运行这个新的模型运行,以查看更新后的MODFLOW结果。
过去,如果您想要将原始模型与PEST更新的模型保持分开,您需要执行"另存项目为..."。使用Visual MODFLOW Flex,您可以在单个项目中访问所有这些模型场景/运行,使您能够高效地比较原始模型和"PEST调整"的模型运行,您可以在计算的水头、属性区参数等之间进行比较。
Making Changes after a PEST Run
在PEST完全运行后,您可能需要对定义的PEST输入和/或数值模型进行更改。在进行这些更改的情况下,请按照以下步骤操作:
Numerical Model
如果您更改模型引擎,您必须返回到 PEST 工作流的起点,并在每个步骤一直点击“应用”和“下一步”,直至运行 PEST 步骤。
如果您更改翻译设置(例如,求解器、包设置)和/或属性包(LPF 与 BCF),只需返回到定义克里金参数步骤,点击【应用】按钮,然后您可以直接运行 PEST。
如果您需要更改参数分区(例如,添加或删除导电性分区),这是 PEST 工作流程中尚未更新的内容。请克隆模型运行,更改该克隆中的参数分区,然后从此模型克隆启动 PEST 运行。
PEST Inputs
如果您更改观测值和/或权重:
• 返回到 PEST 工作流的这一步,并进行必要的更改。
• 点击工作流工具栏顶部的 [应用] 按钮。
• 转到运行 PEST 步骤。
如果您更改属性区参数的最小/最大值:
• 在工作流的此步骤进行更改。
• 点击 [应用] 按钮。
• 转到定义克里金变程,并点击 [应用] 重新生成这些 PEST 输入文件。
• 转到所需的正则化步骤,并重新生成 PEST 控制文件。
• 转到运行 PEST 步骤并运行 PEST。
如果您更改插值点值或添加新的插值点:
• 在工作流的此步骤进行更改。
• 点击 [应用] 按钮。
• 转到定义克里金变程,并点击 [应用] 重新生成这些值。
• 转到运行 PEST 步骤。
\quad