摘要:
调查地下水停留时间和补给来源对于干旱盆地冲积含水层的水资源管理至关重要。本文利用环境示踪剂(氯氟烃、3H、14C、δ2H、δ18O)和地下水水化学成分,评估了中国玛纳斯河流域断层影响下冲积含水层地下水的平均停留时间(MRTs)和含水层补给情况。玛纳斯河上游(断层以南)的含水层含有非常高的 3H 活性(41.1-60 TU),表明地下水补给受到 20 世纪 60 年代核弹试验的影响。碳-14 地下水年龄与距山区距离(中游 3000-5000 年,下游 >7000 年)和地下水深度呈正相关,但与 3H 活性降低(1.1 TU)和更负的 δ18O 值呈负相关。这种现象表明,半承压含水层中较深层地下水的来源是古气象补给。本文特别关注了利用指数活塞流模型估算 CFCs 和 3H 的 MRTs。结果表明,CFCs 的 MRTs 变化范围为 19-101 年,3H 的变化范围为 19-158 年。3H 估算的 MRTs 比 CFCs 估算的长得多,这可能是由于液相 (3H) 和气相 CFCs 通过非饱和带的不同时滞造成的。CFCs 估算的 MRTs 与 pH 以及 SiO2 和 SO42- 的浓度呈良好相关性,这可以为估算地下水年龄的一级 MRTs 指标提供可能的方法。利用 CFCs 二元混合法研究了断层南部和北部的年轻水比例。断层南部发现相对现代的补给,年轻(1940 年后)水比例为 87%-100%,而断层北部年轻水比例变化范围为 12%-91%。这项研究表明,结合 CFCs 和 3H 停留时间示踪剂,有助于分析不同混合端元的地下水 MRTs 和补给来源。
1 导言
地下水是最大的可用淡水资源。它为世界各地的社区提供淡水,并在能源和粮食安全、人类健康和生态系统保护中发挥着至关重要的作用(Gleeson et al., 2016)。调查地下水的停留时间(即从补给到抽水井、泉水或河流排泄的时间段)可以揭示地下水系统中的储水、混合和输送信息(Cartwright et al., 2017; Dreuzy and Ginn, 2016; McGuire and McDonnell, 2006)。这在冲积含水层中尤为重要,因为地下水更新能力通常很强(Huang et al., 2017),因此在干旱地区发挥着饮用水源的作用。此外,冲积含水层越来越容易受到人为污染物和土地利用变化的影响(Morgenstern and Daughney, 2012)。
由于无法通过经验测量地下水系统中的停留时间分布,因此一种常用的方法是对试验分布的化学浓度进行参数拟合(Suckow, 2014)。
广泛使用的集总参数模型(Małoszewski and Zuber, 1982; Jurgens et al., 2012)通常假设水文系统处于稳定状态,已被应用于地下水系统(Cartwright et al., 2018; McGuire et al., 2005; Morgenstern et al., 2015; Stewart et al., 2010)。
根据其测量的时间跨度,地下水停留时间示踪剂可分为三种类型。第一种是水同位素(18O、2H、3H),是确定短于 5 年的平均停留时间(MRTs)的理想示踪剂,使用稳定同位素(Kirchner et al., 2010; McGuire et al., 2005; Stewart et al., 2010)和最长约 100 年的 3H(Beyer et al., 2016; Cartwright and Morgenstern, 2015, 2016; Morgenstern et al., 2010)。
第二种是合成有机化合物(氯氟烃,CFC-11、CFC-12 和 CFC-113,以及六氟化硫 SF6)的大气浓度,放射性溶质示踪剂,如 14C、36Cl 和稀有气体(4He、85Kr、39Ar 和 81Kr),用于确定更长时间跨度(数十年到数千年)的地下水 MRTs(Aggarwal, 2013)。
第三种是主要离子(如惰性氯化物 Cl)的浓度,它们以类似于稳定同位素的方式确定 MRTs,具体取决于通过系统进入输出的季节性变化输入周期的衰减。
通过季节性示踪剂周期法(例如稳定同位素值或 Cl 浓度)确定的 MRTs,需要详细的时间序列测量,例如每周或更频繁的时间步长,可能更适合于通过流域的水排放并排入河流(Hrachowitz et al., 2009; Kirchner et al., 2010; McGuire et al., 2005)。然而,主要离子浓度与地下水年龄的强相关性使得水化学能够作为年龄的替代指标,或通过先前在封闭岩性条件下建立的关系来补充年龄(Beyer et al., 2016; Morgenstern et al., 2010, 2015)。
水的年龄可以通过 3H 确定,它是水分子的一种成分,半衰期为 12.32 年(Tadros et al., 2014)。
由于 20 世纪 50 年代和 60 年代的大气热核试验,北半球的 3H 活性比南半球高几个数量级(Clark and Fritz, 1997; Tadros et al., 2014),导致平均年 3H 活性峰值达到自然水平的数百倍。
目前的降雨 3H 活性仍然受到炸弹脉冲尾端的影响,特别是在中国西北干旱地区,由于大陆效应(Tadros et al., 2014)和 1964 年至 1974 年中国的 атмосферные 核试验。因此,测量单个样本的 3H 活性无法准确评估北半球的地下水 MRTs(Cook et al., 2017),需要使用集总参数模型进行 3H 测量的时间序列(Han et al., 2007, 2015)。
与 3H 相比,CFCs 在大气中缓慢降解,并且具有较长的降解半衰期,这使得它们在大面积范围内均匀分布在大气中;然而,南半球比北半球有 1-2 年的滞后(Cartwright et al., 2017; Cook et al., 2017; Darling et al., 2012)。1950 年代后 CFCs 在大气中的积累,加上它们在水中的溶解度(尽管溶解度很低),使得它们通常被用作大约 60 年的地下水 MRTs 指标(Darling et al., 2012; Han et al., 2012)。
尽管 CFC-11、CFC-12 和 CFC-113 的大气浓度在 1994 年至 2002 年之间下降(不同的 CFCs 在不同的时间达到峰值;Cook et al., 2017),从而为 CFC 比率图留下了解释空间(Darling et al., 2012),但今天和 1990 年代之前不同的大气 CFC 比率(Plummer et al., 2006b)使得可以使用 CFCs 确定地下水 MRTs。
因此,在炸弹脉冲 3H 活性下降后,CFCs 通常被认为是计算地下水 MRTs 的替代方法(Cartwright et al., 2017; Cook et al., 2017; Qin et al., 2011)。然而,基于 CFCs 的地下水 MRTs 可能并不总是准确的。例如,如果非饱和带中的过量空气影响补给期间的 CFC 浓度(Cook et al., 2006; Darling et al., 2012),或者当 CFC 输入在城市和工业环境中受到污染时(Carlson et al., 2011; Han et al., 2007; Mahlknecht et al., 2017; Qin, 2007),则从 CFCs 估算的 MRTs 将被低估。另一方面,如果 CFC 输入在厌氧地下水中降解(最显着的是 CFC-11 和 CFC-113;Cook and Solomon, 1995; Horneman et al., 2008; Plummer et al., 2006b),则地下水 MRTs 将被高估。
此外,不同年龄的水之间的混合,发生在含水层内或从长筛井抽水期间(Cook et al., 2017; Custodio et al., 2018; Visser et al., 2013),给使用示踪剂数据估算 MRTs 带来了困难。
由于聚集误差,在混合水中计算的 MRTs 将小于实际值(Cartwright and Morgenstern, 2016; Kirchner, 2016; Stewart et al., 2017)。使用基于结合停留时间示踪剂的多模型方法进行 MRT 估算将减少计算不确定性(Green et al., 2016; Visser et al., 2013),并表明是否可以实际估算 MRTs(Cartwright et al., 2017)。
在断层影响下,中国西北干旱地区玛纳斯河流域(MRB)的冲积含水层中,预计含水层内和长筛井抽水过程中的混合是常见的(图 1a、b)。
特别是,从长筛井(超过 10000 个钻孔;Ma et al., 2018)抽水使得地下水混合最有可能发生。由于深层非饱和带(地下水深度高达 180 m)和对比的地质环境(由于逆冲断层导致的水头下降高达 130 m),MRTs 仍然没有在冲积含水层中得到充分认识(图 1c)。我们旨在提供首次使用 MRB 中 CFCs 和 3H 估算钻孔地下水排放(例如,水井开采)的 MRTs。然后,我们将分析地下水中的主要水化学离子作为 MRTs 的一级指标。此外,我们确定不同混合端元的补给来源并限制混合速率。
2 地质和水文地质背景
中国西北部山区玛纳斯河上游流域的基岩由花岗岩、泥盆纪和石炭纪的沉积岩层以及中生代石灰岩组成(Jelinowska et al., 1995)。火山碎屑岩暴露在南部山区相对较小的区域。山麓绿洲平原位于新生界地层中,包括第三纪和第四纪沉积物,在山麓地区总深度超过 5000 米,在平原中心深度为 500-1000 米(Zhao, 2010)。垂直剖面(图 1c)显示,第四纪沉积物由山麓平原的砾石、砂砾和沙组成。第四纪沉积物中的粘土含量从溢流泉区向北绿洲平原增加,后者由粉质壤土和粘土组成。霍尔果斯-玛纳斯-图古鲁逆冲断层发生在早更新世,切割了第三纪地层,在山麓冲积扇中总长约 100 公里(图 1);这些是阻水特征。这些断层在中、晚更新世间歇性活动,然后在晚全新世变得更加活跃(Cui et al., 2007)。
在山区,地下水由变质岩裂隙水、岩浆岩裂隙水、碎屑岩裂隙水和第三纪碎屑岩裂隙水组成(Cui et al., 2007; Zhou, 1992)。在石河子(SHZ)地区的山麓平原,地下水来自单层无承压含水层。从溢流泉区到中心绿洲平原,地下水由浅层无承压水和深层承压水组成。由于粒度变化和局部粘土含量增加,水力梯度、水力传导率和渗透率呈现出较大范围的变化(Wu, 2007)。地下水流向与玛纳斯河流向一致。在山麓平原,饱和厚度超过 650 米的无承压含水层由玛纳斯河水补给,并与山麓平原和北部绿洲平原的水文网络水力连通(Ma et al., 2018; Wu, 2007)。山麓平原无承压含水层的深度从南向北逐渐减小,并且地下水相对新鲜,总溶解固体 (TDS) < 1 g L-1。地下水通过 SHZ 北部地区的泉水排放(图 1c)。北部绿洲平原浅层无承压含水层中的地下水 TDS > 3 g L-1,而下伏承压含水层中地下水的 TDS 在 0.3 到 1.0 g L-1 之间变化(Wu, 2007)。由于 SHZ 南缘的逆冲断层,地下水深度深达 180 米,水头下降高达 130 米(图 1c)。
3 材料与方法
3.1 水样采集
2015 年 6 月至 8 月期间,沿玛纳斯河采集了 29 个地下水样本(从完全穿透的井和三个自流井中抽取)(表 1 和图 2 中的 G1 到 G29)。根据水化学和稳定同位素数据,将位置分为三个组:
上游地下水(UG,武夷路以南)、中游地下水(MG,武夷路和西总干渠-伊西奇之间的区域)和下游地下水(DG,西总干渠-伊西奇以北)。
地下水样本取自用于灌溉和生活供水的井,其中浅井在采样前至少抽水 5 分钟,深井在采样前活跃灌溉超过 10 天。
地表水样本数据(河水、沟渠和水库水)和地下水样本数据(样本 ID 为 G30 至 G39)由 Ji (2016) 和 Ma et al. (2018) 报告。
使用校准过的 Hach (HQ40d) 电导率和 pH 计(使用前已校准)在现场测量了水温 (T)、pH、电导率 (EC) 和溶解氧 (DO)(表 1)。
碳酸氢盐通过现场用 0.05N HCl 滴定法测定。
要分析化学和稳定同位素值的样品通过 0.45 μm Millipore 注射器过滤器在现场过滤,并存储在预清洗的聚丙烯瓶中,温度为 4℃,直至分析。
对于阳离子和锶同位素分析,样品用超纯 HNO3酸化至 pH < 2。对于 CFC 样品,采取了极 precautions 措施,以避免设备(如泵和管道)的污染(Cook et al., 2017; Darling et al., 2012; Han et al., 2012)。
在 очистка 井后,使用铜管采样管直接从钻孔中采集水样。管道的一端连接到井套管,另一端放置在 2000mL 烧杯内的 120mL 硼硅玻璃瓶底部。井水通过管道流动 10 分钟,彻底冲洗管道。瓶子被淹没,然后在水下充满并盖上盖子,当瓶子中没有气泡出现时,按照 Han et al. (2007) 描述的协议进行。在本研究中,每个井采集五个瓶子,其中三个用于分析。总共采集了 10 个井进行 CFC 分析(CFC-11、CFC-12 和 CFC-113)。收集用于 3H 分析的未过滤地下水样品,并储存在 500mL 密封聚丙烯瓶中。按照 Chen et al. (2003) 报告的程序,将用于 14C 活性分析的溶解无机碳 (DIC) 从 180 到 240 升水样中沉淀到 BaCO3 中,并在现场密封在 500mL 聚丙烯瓶中。这是通过添加先前用 NaOH 将 pH 值调整为 12 的过量 BaCl2 来完成的。
3.2 分析技术
CFC 浓度在样品采集后一个月内,由中国科学院地质与地球物理研究所(IGG-CAS)地下水测年实验室使用带有电子捕获检测器 (ECD) 的吹扫捕集气相色谱程序进行分析。该程序由 Han et al. (2012, 2015) 和 Qin et al. (2011) 报告,该程序是对 Oster et al. (1996) 的修改。每种 CFC 的检测限约为 0.01 pmol L-1 水,误差 < 5%。获得的结果如表 1 所示。
地下水的 3H 和 14C 活性是在武汉中国地质大学生物地质与环境地质国家重点实验室使用液体闪烁光谱仪(1220 Quantulus 超低水平计数器,PerkinElmer,Waltham,MA,USA)测量的。
用于 3H 的水样在分析之前经过蒸馏和电解富集。
详细程序基于 Morgenstern 和 Taylor (2009) 中的程序。
3H 活性表示为 tritium unit (TU),1 TU 对应于 1 × 10-18 的 3H/1H 比率。
对于 14C 样品,首先将获得的 BaCO3 样品转化为 CO2,然后转化为乙炔 (C2H2),然后按照 Polach (1987) 所述,在分析之前催化三聚化为 C6H6。14C 活性报告为现代碳百分比 (pMC)。3H 和 14C 的实现精度值分别为 ±0.2 TU 和 ±0.4 pMC。
阳离子、阴离子和稳定同位素测量是在武汉中国地质大学生物地质与环境地质国家重点实验室进行的。
使用电感耦合等离子体原子发射光谱仪 (ICP-AES) (IRIS Intrepid II XSP, Thermo Elemental) 分析阳离子。
在过滤后的未酸化样品上使用离子色谱仪 (IC) (Metrohm 761 Compact IC) 分析阴离子。
分析误差由阳离子和阴离子(含 HCO3-)之间的质量平衡推断,并在 ±6% 以内。使用 Finnigan MAT-253 质谱仪(Thermo Fisher,美国,德国不来梅制造),采用 TC/EA 方法测量稳定同位素值(δ2H 和 δ18O)分析。
δ2H 和 δ18O 值(表 1)以 ‰ 表示,相对于维也纳标准平均海洋水 (VSMOW) 的 δ 表示法,δ2H 的分析精度为 0.5‰ vs. VSMOW,δ18O 的分析精度为 0.1‰。
3.3 地下水测年
3.3.1 CFCs 表明现代水补给
要表明现代水补给,需要了解当地降水 CFCs 大气混合比的历史。
北半球 CFCs 的局部和全球背景大气混合比之间的差异——CFC 过剩——根据该地区的工业发展情况而显着变化。
据报道,在拉斯维加斯、图森、维也纳和北京等城市环境的空气中,CFC 浓度升高(比整个北半球高 10%–15%)(Barletta et al., 2006; Carlson et al., 2011; Han et al., 2007; Qin et al., 2007),而兰州和银川(中国西北部)的大气 CFC 混合比则比北半球低约 10%(Barletta et al., 2006)。玛纳斯河流域位于中国西北部(图 1a),人口密度很低,远离工业城市。
为了评估 CFCs 对现代水补给的影响,本研究采用了北半球大气混合比的时间序列趋势(图 3;1940-2014,USGS Groundwater Dating Lab,上次访问:2017 年 10 月 27 日)
。
测量的 CFC 浓度(以 pmol L-1 为单位)可以根据亨利定律,转化为与水样溶解平衡的 CFC 分压(以 pptv 为单位)。
计算过程按照 Plummer et al. (2006a) 进行。在中国西北干旱地区,将当地浅层地下水温度估计为补给温度比年平均地表气温更合适(Qin et al., 2011),因为当地降水量通常无法到达地下水
。对 MRB 的研究(Ji, 2016; Wu, 2007)也表明,与丰富的地下水侧向流动补给和从山区到山麓地区的河流泄漏相比,当地降水的垂直补给水量要少得多。
在本研究中,使用测量的地下水温度(在井之间为 11.5 到 15.7℃ 之间变化,表 1)作为补给温度来估算地下水输入 CFC 浓度。补给区的地表海拔从 316 到 755 米不等。然后通过将计算的与水样溶解平衡的 CFC 分压与空气中的历史 CFC 浓度(图 3)进行比较来确定现代水补给。
3.3.2 表观 14C 年龄
地下水中碳-14(14C,半衰期 5730 年)的活性通常用于估算大约 200 到 30000 年时间段内的地下水年龄,并确定各种气候条件下混合水的补给情况(Cook et al., 2017; Custodio et al., 2018; Huang et al., 2017)。
由于无法直接测量地下水年龄,并且样本中的年龄分布未知,因此可以使用地下水 14C 样本的数学公式来推导表观年龄(Suckow, 2014)。
这里的“表观”描述了这样一个事实,即该年龄与补给和采样之间的时间差不对应,在此期间,假定水团的活塞流(Cartwright et al., 2017; Suckow, 2014)。
如果溶解的无机碳来自多种来源的混合物,或者如果来自大气或土壤带的 14C 被含水层基质中 14C-free 碳酸盐矿物的溶解和沿地下水流动路径的生化反应显着稀释,则计算地下水表观 14C 年龄可能会变得复杂(Clark and Fritz, 1997)。
尽管可能只有少量的碳酸盐溶解,并且确定地下水停留时间需要 14C 校正(Atkinson et al., 2014)。当补给期间或沿地下水流动路径的碳酸盐溶解可能稀释初始土壤 CO2 时,可以使用 δ13C 来追踪该过程(Clark and Fritz, 1997)。
含有 CO2 的水与碳酸盐矿物反应的方程通常写成如下(修改自 Pearson and Hanshaw, 1970):
CO2 + H2O + CaCO3(δ13Ccarb ≈ 0) ⇌ Ca2+ + 2HCO3- (δ13CDIC) (R1)
其中 δ13Ccarb 是溶解的碳酸盐 δ13C 值(约 0;Clark and Fritz, 1997),δ13CDIC 是地下水中测量的 δ13C 值。
根据已知调整含水层中地球化学和物理稀释过程(没有放射性衰变)后测量的 14C 活性,地下水表观 14C 年龄 (t) 可以通过以下衰变方程计算:
t = -(1/λ14C) * ln(a14C/a014C) (1)
其中 λ14C 是 14C 衰变常数(λ14C = ln2/5730),a14C 是地下水中 DIC 的测量 14C 活性。
中国西北干旱地区的前期研究(Edmunds et al., 2006; Huang et al., 2017)得出结论,来自含水层基质的 20% “死”碳的体积值被认可,这与 Vogel (1970) 获得的值 (10%–25%) 一致。因此,使用 80 pMC 的初始 14C 活性 (a014C) 来校正地下水 14C 年龄(结果如表 1 所示),尽管这种简单的校正没有尝试校正可能经历不同水-岩相互作用历史的单个样本的年龄。
4.2.3 3H 和 14C 指标
利用地下水中的14C活度测定了地下水的补给情况,时间范围从几个世纪到几千年(Custodio等,2018),而3H则用于现代降水补给的研究,特别是在核爆时期(Cook等,2017;Huang等,2017)。地下水中的3H活度范围从1.1到60TU(见图4和表1),其中UG(G4)地区的活度最高,其次是MG(平均12.4 TU)和DG(平均4.5 TU)。UG地区的所有3H值(G1、G2和G4)以及MG的G23样本的3H值均高于34.3 TU,表明这些地区存在一些1960年代降水补给的成分。地下水中3H活度低于5.6 TU的,表示这些水体含有一些1950年代之前的补给。
3H和14C活度沿着地下水流动路径与距离山区的关系变化较大(见图8),表明这些地下水的补给是多种时间尺度的混合结果。观察到两种不同的趋势,分别代表从上游到中游地区的3H活度分布:首先,在上游地区,随着距离的增加,3H活度呈上升趋势,从41.1 TU(G1和G2)增加到60 TU(G4),表明G4的1960年代降水成分高于G1和G2;实际上,正如图2所示,G4附近的样本具有最高的水力梯度值。其次,在中游地区,从37.5 TU(G23)到1.1 TU(G14),地下水中的3H活度呈明显下降趋势,表明在从断层北侧的地下水流动方向上,可能发生了更多1950年代之前的降水补给。此外,MG地区的14C活度随着距离的增加有所小幅上升(见图8),从43.4 pMC增加到54.6 pMC,唯一的例外是位于大约54公里处的G12样本(14C活度为86.9 pMC,14C年龄约为-684年,表明现代补给;见表1),而DG地区的14C活度则下降至23.5 pMC。在DG地区,3H活度在2.9–6.91 TU之间,而14C值较低(23.5–34.3 pMC),表明这些地下水可能与后核爆时期的降水补给发生了混合。
地下水补给通过使用地下水中的14C活度进行确定,时间间隔从几个世纪到几千年(Custodio等,2018),而3H则被用于现代降水补给,特别是在核爆期间(Cook等,2017;Huang等,2017)。地下水中的3H活度从1.1到60TU(图4和表1),UG(G4)中的值最高,其次是MG(平均值12.4 TU)和DG(平均值4.5 TU)。所有UG中的3H值(G1、G2和G4)以及MG中的G23值均高于34.3 TU,表明这些样品含有1960年代降水补给的部分成分。3H活度低于5.6 TU的地下水表示含有一些1950年代以前的补给成分。
3H和14C活度随着距离山区的变化在地下水流动路径上有很大的波动(图8),表明地下水的补给发生在短时间到长期的混合过程。地下水中3H活度与距离山区的分布呈现两种不同的趋势(图8),这一现象发生在曼纳斯河平原附近(图2),该地区有卵石和沙砾沉积物。对此现象的解释可能是:
(i) 1989年以后水体与1950到1970年间补给的较老水体的二元混合,这些较老水体不包含CFC自由水(1940年以前);或者
(ii) 两种端元的混合,一种端元包含各种混合的年轻水(但在1989年前的水)和较老水,另一种端元则包含1989年以后的水。第二种解释要求样品中至少包含1960年代的部分核爆后水(通过3H活度可以识别),同时还含有1989年后的水和1940年以前的水,这与CFC数据(图7a)不一致。如果第一个解释成立,则这三种样品的二元混合假设和年轻水体(1940年后)的成分应相应调整。
由于大气中的3H活度已长期升高,老水体成分可以通过3H活度低于CFC活度的异常低值来识别(Plummer等,2006b)。G5样品中含有非常低的CFC-113,3H浓度为3.8 TU(表1),表明该样品可能是较老水(1940年前)和1960-1970年间水体的混合。低的3H浓度可能是由于老水成分比例较高,导致无法识别“3H核爆峰”。
G16样品位于阴影区域外(图9),其3H活度低,但CFC浓度较高。这种情况可能是由以下原因解释:
(i) 采样前水体经历了大幅波动,水位的波动可能是由于地下水抽取或裂隙系统中空气过量溶解引起的;或者
(ii) 河水或水库水,CFC浓度较高,但3H补给很少。此外,相对较高的年轻水比例(89%;表2)排除了老水的稀释效应。灌溉水的再渗透可能导致CFC浓度升高,但不会改变3H浓度(Han等,2015)。然而,G16样品中NO₃⁻浓度相对较低(4.51 mg/L;数据来自Ma等,2018),表明灌溉再渗透没有显著影响。因此,河水或水库水的再充注是可能的,且其NO₃⁻浓度很低(2.7-7.3 mg/L;数据来自Ma等,2018)。
3.3 地下水年代学
3.3.1 CFCs指示现代水补给
了解当地大气中CFCs(氯氟烃)在降水中的历史混合比,对于指示现代水补给非常重要。北半球大气中CFCs的局部和全球背景混合比——CFC过剩——会因该地区的工业发展程度而有很大差异。在拉斯维加斯、图森、维也纳和北京等城市的空气中,CFC浓度被报告为比北半球整体高出10%–15%(Barletta等,2006;Carlson等,2011;Han等,2007;Qin等,2007),而兰州和银川(中国西北)的大气中CFC混合比约比北半球低10%(Barletta等,2006)。曼阿斯河流域位于中国西北部(见图1a),人口密度非常低,远离工业城市。为了评估通过CFCs进行的现代水补给,本研究采用了北半球大气混合比的时间序列趋势(见图3;1940–2014年,https://water.usgs.gov/lab/software/air_curve/index.html,最后访问时间:2017年10月27日)。
所测得的CFC浓度(单位:pmol/L)可以根据亨利定律,通过与水样处于溶解平衡的CFC的部分压力(单位:pptv)进行解释。计算过程遵循了Plummer等(2006a)的方法。在干旱的中国西北地区,估算当地浅层地下水温度作为补给温度,比使用年均地表空气温度(Qin等,2011)更为合适,因为当地的降水量通常无法达到地下水层。关于曼阿斯河流域的研究(Ji,2016;Wu,2007)也表明,与丰富的地下水横向流动补给和从山脉到前山地区的河流漏水相比,来自当地降水的垂直补给水量要少得多。在本研究中,所测得的地下水温度(不同井之间的温度从11.5°C到15.7°C不等,见表1)被用作补给温度,以估算地下水输入的CFC浓度。补给区的地表海拔范围从316米到755米。通过将计算出的与水样溶解平衡的CFC部分压力与历史大气中CFC浓度进行比较,从而确定了现代水补给的情况(见图3)。
3.3.2 表观14C年龄
碳-14(14C,半衰期5730年)在地下水中的活度常用于估算大约200至30,000年的地下水年龄,并用于确定不同气候条件下的水混合补给来源(Cook等,2017;Custodio等,2018;Huang等,2017)。由于地下水年龄无法直接测量,而且样本中的年龄分布是未知的,因此可以通过地下水14C样本的数学公式推导出表观年龄(Suckow,2014)。“表观”一词描述的是年龄并不对应补给与采样之间的时间差,这期间假定水体为活塞流(Cartwright等,2017;Suckow,2014)。如果溶解的无机碳来自多种来源的混合,或者如果大气或土壤层中的14C通过碳酸盐矿物在含水层基质中的溶解及地下水流动路径中的生化反应被显著稀释,那么地下水表观14C年龄的计算可能会变得复杂(Clark和Fritz,1997)。尽管碳酸盐溶解可能较少发生,但地下水停留时间的确定需要14C修正(Atkinson等,2014)。当补给过程中或地下水流动路径上碳酸盐的溶解可能稀释初始的土壤CO2时,13C可以用来追踪这一过程(Clark和Fritz,1997)。
CO2含水与碳酸盐矿物反应的方程通常写作如下(修改自Pearson和Hanshaw,1970):
CO2 + H2O + CaCO3(δ13Ccarb = 0)→ Ca²⁺ + 2HCO3⁻(δ13CDIC)(R1)
其中,δ13Ccarb是溶解碳酸盐的δ13C值(约为0;Clark和Fritz,1997),δ13CDIC是地下水中测得的δ13C值。
根据知道的经过地球化学和物理稀释过程调整后的测得14C活度(不考虑放射性衰变),地下水的表观14C年龄(t)可以通过以下衰变方程计算:
t = - (1/λ¹⁴C) × ln (a¹⁴C / a₀¹⁴C) (1)
其中,λ¹⁴C是14C衰变常数(λ¹⁴C = ln2 / 5730),a¹⁴C是地下水中溶解无机碳(DIC)的测得14C活度。
中国西北干旱地区的先前研究(Edmunds等,2006;Huang等,2017)已得出结论,识别出来自含水层基质的20%“死”碳体积值,这与Vogel(1970)得到的10%–25%的值一致。因此,初始14C活度(a₀¹⁴C)为80pMC,用于修正地下水14C年龄(结果见表1),尽管这一简单的修正并未尝试修正可能经历了不同水岩相互作用历史的个别样本的年龄。
3.3.2 表观14C年龄
碳-14(14C,半衰期5730年)在地下水中的活度常用于估算大约200至30,000年的地下水年龄,并用于确定不同气候条件下的水混合补给来源(Cook等,2017;Custodio等,2018;Huang等,2017)。由于地下水年龄无法直接测量,而且样本中的年龄分布是未知的,因此可以通过地下水14C样本的数学公式推导出表观年龄(Suckow,2014)。“表观”一词描述的是年龄并不对应补给与采样之间的时间差,这期间假定水体为活塞流(Cartwright等,2017;Suckow,2014)。如果溶解的无机碳来自多种来源的混合,或者如果大气或土壤层中的14C通过碳酸盐矿物在含水层基质中的溶解及地下水流动路径中的生化反应被显著稀释,那么地下水表观14C年龄的计算可能会变得复杂(Clark和Fritz,1997)。尽管碳酸盐溶解可能较少发生,但地下水停留时间的确定需要14C修正(Atkinson等,2014)。当补给过程中或地下水流动路径上碳酸盐的溶解可能稀释初始的土壤CO2时,13C可以用来追踪这一过程(Clark和Fritz,1997)。
CO2含水与碳酸盐矿物反应的方程通常写作如下(修改自Pearson和Hanshaw,1970):
CO2 + H2O + CaCO3(δ13Ccarb = 0)→ Ca²⁺ + 2HCO3⁻(δ13CDIC)(R1)
其中,δ13Ccarb是溶解碳酸盐的δ13C值(约为0;Clark和Fritz,1997),δ13CDIC是地下水中测得的δ13C值。
根据知道的经过地球化学和物理稀释过程调整后的测得14C活度(不考虑放射性衰变),地下水的表观14C年龄(t)可以通过以下衰变方程计算:
t = - (1/λ¹⁴C) × ln (a¹⁴C / a₀¹⁴C) (1)
其中,λ¹⁴C是14C衰变常数(λ¹⁴C = ln2 / 5730),a¹⁴C是地下水中溶解无机碳(DIC)的测得14C活度。
中国西北干旱地区的先前研究(Edmunds等,2006;Huang等,2017)已得出结论,识别出来自含水层基质的20%“死”碳体积值,这与Vogel(1970)得到的10%–25%的值一致。因此,初始14C活度(a₀¹⁴C)为80pMC,用于修正地下水14C年龄(结果见表1),尽管这一简单的修正并未尝试修正可能经历了不同水岩相互作用历史的个别样本的年龄。
3.3.3 地下水平均滞留时间估算
地下水混合可能发生在含水层内部和长筛孔井中(Cook等,2017;Custodio等,2018;Visser等,2013)。在干旱的非压水含水层中,已报告了广泛的地下水滞留时间(年龄),因为补给发生在不同的气候条件下(Custodio等,2018)。此外,由于流路径的长度不同,地下水滞留时间的广泛变化无法直接测量(de Dreuz和Ginn,2016;Suckow,2014)。一种集总参数模型可能是描述滞留时间分布的替代方法,同时描述不同滞留时间混合物的平均滞留时间。借助气体示踪剂(如3H、CFCs、SF6和85Kr),可以描述示踪剂浓度的分布(Stewart等,2017;Zuber等,2005),从而获得地下水的MRTs。对于稳态地下水水文系统,进入地下水的3H和CFCs示踪剂是按自然过程与体积流量成比例注入的。与输入的3H和CFCs相关的采样时水中的输出浓度可以通过以下卷积积分描述(Małoszewski和Zuber,1982):
Cout(t) = ∫₀^∞ Cin(t-τ) * g(τ) * e^(-λ₃Hτ) dτ (2a)
Cout(t) = ∫₀^∞ Cin(t-τ) * g(τ) dτ (2b)
其中,Cout是示踪剂输出浓度,Cin是示踪剂输入浓度,τ是滞留时间,t-τ是水进入集水区的时间,λ₃H是3H衰变常数(λ₃H = ln2 / 12.32),g(τ)是描述地下水水文系统滞留时间分布的系统响应函数。
在本研究中,来自北半球大气混合比时序趋势的CFC浓度(图3)和乌鲁木齐降水中的3H活度(图4)分别被用作CFC和3H补给浓度(Cin)的代理。乌鲁木齐站点的历史降水3H活度(图4)是通过国际原子能机构(IAEA)提供的数据使用对数插值法重建的。1969年至1983年间香港和伊尔库茨克不同纬度的降水3H活度被用于(数据可在https://www.iaea.org/获取,最后访问:2017年12月4日)。作为输入数据使用的3H活度时序(图4)基于以下考虑:首先,MRB位于北半球,那里爆炸脉冲3H活度比南半球高几个数量级(Clark和Fritz,1997;Tadros等,2014),并且在中国西北地区受到了1964年至1974年间中国大气核试验的影响。因此,残留的3H活度仍然受到爆炸脉冲尾部的影响。其次,研究区距离西太平洋超过3500公里,因此大气3H活度比沿海地区更高,这是由于大陆效应(Tadros等,2014)。此外,尽管大气3H活度在不同季节之间有所变化(Cartwright和Morgenstern,2016;Morgenstern等,2010;Tadros等,2014),但本研究考虑了年均值(图4)。
已经描述了几种滞留时间分布(Małoszewski和Zuber,1982;Jurgens等,2012),并且已广泛应用于不同时间尺度和集水区的研究(Cartwright和Morgenstern,2015,2016;Cartwright等,2018;Hrachowitz等,2009;Morgenstern等,2010,2015;McGuire等,2005)。每个模型的选择取决于其适用的水文系统中的水文地质情况。指数活塞流模型(EPM)描述了一个含有指数流段后跟着活塞流段的含水层。活塞流模型假设来自不同流线的水混合最小,并且在封闭含水层中没有或几乎没有补给;而指数流模型假设在非压水含水层中流线之间的水混合最小,并且流线具有指数分布的流动时间(Jurgens等,2012;Małoszewski和Zuber,1982)。该模型的加权函数为:
(g(τ) = 0) 对于 (τ < τ_m(1 - 1/η)) (3a)
(g(τ) = \frac{η}{τ_m} e^{(-ητ/τ_m + η - 1)}) 对于 (τ ≥ τ_m(1 - 1/η)) (3b)
扩散模型(DM)主要测量扩散相对于对流的重要性,并适用于封闭或部分封闭的含水层(Małoszewski,2000)。其滞留时间分布为:
The weighting function of the exponential mixing model
(EMM) is
其中,τm\tau_m 是平均滞留时间,η\eta 是定义的比率,定义为 η=lPlE=lPlE+1\eta = \frac{l_P}{l_E} = \frac{l_P}{l_E + 1},其中 lEl_E(或 lPl_P)是水位面上接收(或未接收)补给区域的长度。DPD_P 是扩散参数,是佩克莱特数(Pe)的倒数,定义为 DP=Dv⋅xD_P = \frac{D}{v \cdot x},其中 DD 是扩散系数(单位:m²/天),vv 是流速(单位:m/天),xx 是距离(单位:m)。
每个滞留时间分布有一个或两个参数。平均滞留时间(MRT,τm\tau_m)通过将输入(降水中的3H和CFCs时序)与每个模型卷积,以匹配输出(地下水中测量的3H和CFC浓度)来确定。其他参数(η\eta 和 DPD_P)则根据水文地质条件来确定。为了解释MRB数据集的年龄,使用了EPM(η=1.5\eta = 1.5 和 2.22.2)、DM(DP=0.03D_P = 0.03 和 0.10.1)以及EMM模型,之后对比了这些模型计算的MRT值。
4.3 地下水平均停留时间
4.3.1 3H 和 CFCs
停留时间分布函数(公式 3 到 5)适用于几种特定的水文地质情况(Małoszewski 和 Zuber,1982)。EPM(经验参数模型)特别适用于解释具有指数流和活塞流区域的含水层的 MRT(平均停留时间)(Cartwright 等,2017)。位于河流附近的非被压缩含水层(图 1c)可能表现出指数流,而通过不饱和带的补给(图 1c)很可能类似于活塞流(Cartwright 和 Morgenstern,2015;Cook 和 Böhlke,2000)。对于 3H 和 CFCs 输入的时间序列,首先使用 EPM 计算 MRT(图 10),EPM 比例为 1.5,使用公式(2)和(3)获得(公式(3)中的 lE 是通过将图 1c 中的内陆凹地加到 piedmont 平原得到的)。但河流渗漏和降水输入可能仅来自 piedmont 平原(Ma 等,2018);因此,EPM 中活塞流的比例较小,可能导致 EPM 比例为 2.2(公式(3)中的 lE 仅指图 1c 中的 piedmont 平原)。通过公式(2)、(4)和(5)使用 DM(DP = 0.03 或 0.1)和 EMM 测试 MRT 的真实性。3H(图 10a)和 CFCs(CFC-11 在图 10b,CFC-12 在图 10c,CFC-113 在图 10d)的输出浓度与不同累积参数模型的 MRT 之间的图表显示,MRT 范围很广,并与 MRT 的增加呈正相关。图 11 展示了使用不同累积参数模型从 3H 和 CFC 输入的时间序列确定的 MRT。不同累积参数模型得到的 MRT 值随着 MRT 增加而变得更加离散。另一方面,使用 EPM 比例为 1.5 的 EPM 得到的 MRT 在图 11a 中变化为:对于 CFC-12 降水输入,范围为 19 到 101 年(中位数:51 年);对于 CFC-11 降水输入,范围为 33 到 115 年(中位数:62.3 年);对于 CFC-113 降水输入,范围为 18 到 92 年(中位数:50.2 年)。使用相同 EPM(图 11a 中的 EPM 1.5 和图 11b 中的 EPM 2.2)得到的不同 CFC 降水输入的 MRT 之间有很好的线性关系。当 EPM 比例从 2.2 降到 1.5 时,MRT 增加,表明来自内陆凹地的地下水流路径要长得多。在 UG、MG 东西两岸的东主干道上的 MRT 通过不同的累积参数模型和不同 CFC-12 浓度进行估算,图 2 和图 11b 显示,UG 和东主干道西岸的 MRT 平均值变化范围为 28.6 到 64.8 年,而东主干道东岸的变化范围为 129.2 到 173 年。从图 2 和图 11b 及表 2 中可以看出,MG 东主干道东岸的 MRT 平均值变化比 UG 和东主干道西岸的差异要大。总体来看,最年轻的值出现在断层南侧的 G3 样品中,而最老的值出现在东主干道东岸的 G5 样品中(图 2)。
从图 11 可以看出,使用 3H 输入的时间序列计算得到的 MRT 的不确定性和范围比 CFCs 更大。对于比例为 1.5 的 EPM,使用 3H 输入的时间序列计算的 MRT 范围为 19 到 158 年,中位数为 112.2 年(图 11c),这些 MRT 比通过相同模型计算得到的 CFCs 输入的 MRT(图 11b)要长得多。原因是 3H 通过厚的不饱和带的迁移时间远长于 CFCs。3H 主要在液相中移动,而 CFCs 通过气相在不饱和带中传播(Cook 和 Solomon,1995)。气相中的运输速度比液相中的要快,这预计会导致 3H 的停留时间长于通过 CFCs 确定的停留时间(Cook 等,2017)。此外,使用 EPM、DM 和 EMM 计算的 MRT 范围分别为 16-158 年、72-285 年和 30-360 年。当 MRT 增加时,特别是对于那些高于 130 年的 MRT,不同模型之间的不确定性会增加(图 11c),这些较大的 MRT 主要出现在 DG 和东主干道东岸的 MG。
MG 东主干道西岸的地下水 MRT 显示出随着距离山脉的增加而整体呈上升趋势(图 11b,c)。已有研究证明,更长且更深的流路径通常会导致更长的 MRT(Cartwright 和 Morgenstern,2015,2016;McGuire 等,2005)。另一方面,MG 东主干道东岸的地下水 MRT 要比西岸的长。如图 2 所示,这一现象部分可以归因于西岸距离山脉相对较近且水力梯度较小。先前的研究指出,地下水 MRT 会因为输入浓度的不确定性和不同模型之间的相互作用而有所不同(Cartwright 和 Morgenstern,2015,2016),以及地下水流系统中的混合和扩散。此外,假设含水层是均质的并具有简单的几何形状,可能会导致累积参数模型计算的 MRT 与实际 MRT 存在显著差异(Cartwright 等,2017;Kirchner,2016;Stewart 等,2017)。然而,由于本研究中的均质含水层处于稳态,因此可以合理地使用累积参数模型来计算 MRT。
4.3.2 水化学演变
地下水年龄与水化学组分之间的强相关性使得它们能够作为年龄的代理变量或互补变量,通过类似岩性条件下已建立的关系。例如,硅(SiO2)与 MRTs 之间的优秀相关性(R² = 0.997)已被报告(Morgenstern 等,2010),这比图 12 和其他结果(Morgenstern 等,2015)中的相关性要好。SiO2(图 12a)、硫酸盐(SO₄²⁻)、碳酸氢盐(HCO₃⁻)和总溶解固体(TDS,图 12b)都与地下水年龄表现出较好的相关性,表明水-岩相互作用中的矿物溶解主导了水化学变化(Ma 等,2018),并且主要离子浓度随着地下水年龄的增加而增加。然而,使用 3H 输入的时间序列确定的 MRT 与这些离子的相关性较差(数据未显示)。此外,地下水在含水层内流经的岩性类型和可能的演化路径在水化学成分中起着重要作用。与石膏的负饱和指数(Ma 等,2018)表明,较高的 SO₄²⁻ 浓度(图 12b)是由 T 期地层中的石膏溶解引起的。还需注意的是,高 SO₄²⁻ 浓度也可能来源于地热水(Morgenstern 等,2015),与如 Guo 等(2014)和 Guo 等(2017)等研究相反,且可能由于缺氧条件下的 SO₄²⁻ 还原造成偏差。然而,本研究中的地下水温度相对较低且处于好氧环境中(表 1),使得上述两种情况不太可能发生。
水化学浓度与地下水年龄数据的结合也是研究地下水流动过程和流动条件的重要工具(McGuire 和 McDonnell,2006;Morgenstern 等,2010,2015),并且有助于识别自然地下水演变和人为污染物的影响(Morgenstern 等,2015;Morgenstern 和 Daughney,2012)。地下水的 pH 值在 19 到 101 年的年龄范围内从 10.1 降至 8.6,且有一个对数法则拟合的关系:pH = 0.72 * ln(MRT) + 11.85,R² = 0.65(图 12a)。与此相反,在新西兰报道的地下水 pH
值与年龄之间的关系(Morgenstern 等,2010)较为强烈,R² = 0.93。对水化学变化的更多观察表明,TDS、SiO2 和 SO₄²⁻ 随着地下水年龄的增加而增加(图 12b),这可能与不同的地质背景和岩性差异相关。
4.3.3 结合 3H 和 CFCs 输入的时序数据
研究中对地下水 MRT 的确定不应仅仅依赖于单一的输入指标(例如 CFC 或 3H),而应采用多种输入指标结合使用。图 13 显示了通过 3H 和 CFCs 输入的时序数据分析得出的结果。综合考虑两者输入时,地下水 MRT 得到显著的改进(表 3)。图 13b 显示了 CFCs 和 3H 输入时采用组合方法获得的 MRT 值,计算结果比仅使用单一方法的结果更为可靠。
2NaAlSi₃O₈ C₁₁H₂O D Al₂Si₂O₅·OH/4
C₂NaC C₄H₄SiO₄ C₂OH⁻ (R2)
CaAl₂Si₂O₈ C₃H₂O D Al₂Si₂O₅·OH/4
CCa₂C C₂OH⁻ (R3)
其中,长石(铝长石和斜长石)的所有化学成分都释放到溶液相中,并产生 OH⁻,同时沉淀出高岭土。表 1 显示的 pH 值随井深增加的趋势表明,pH 值低于 9 的地下水可能是由含 CO₂ 的水补给的,因为 OH⁻ 通常与 CO₂ 和土壤中的有机酸反应形成 HCO₃⁻(Wang 等,2009)。类似地,pH 值随 MRT 增加而降低的趋势(图 12a)表明,停留时间更长的地下水含有更高的 CO₂ 浓度,这似乎表明了人为输入。硝酸盐(NO₃⁻)浓度在 4.5 至 20.2 mg/L 之间,媒介值为 12.2 mg/L(数据未显示),超过了地下水中天然硝酸盐浓度 5–7 mg/L(Appelo 和 Postma,2005)。1950 年代后耕作的发展、低 87Sr/86Sr 比例的 N–NO₃ 化肥(Ma 等,2018)以及广泛的地下水灌溉提取(Ji,2016)表明,灌溉渗透可解释该地区的高地下水 NO₃⁻ 浓度。另一方面,由于节水灌溉方式,在中国西北干旱地区的下游区域几乎没有观察到灌溉渗透,地下水 NO₃⁻ 浓度低于 5 mg/L(Ma 等,2018),这并没有对地下水补给产生贡献。
5 结论
本研究利用环境示踪物和水文化学方法,识别了现代和古气象补给来源,限制了不同端元混合比例,并研究了断层影响的水力降落冲积层含水层系统中的混合地下水停留时间(MRT)。曼阿斯河下游区域下方的含水层是由古气象降水补给,而非来自高程较高地区的横向流动。断层南侧获得的相对现代的地下水,年轻水(1940年后)占比为87%-100%,表明老水和年轻水之间的混合比例很小。NO₃⁻浓度(7.86 mg/L)高于自然水平,结合断层南侧(上游区)短的MRT(19年),这暗示了现代污染物的贡献。这一发现需要特别关注,因为该上游区被用作当地社区的生活用水来源。断层北侧的年轻水占比为12%-91%,表明含水层内可能存在不同年龄水的混合,或者是来自不同深度的长孔泵水。此外,水位波动显著,地下水抽水时的垂直补给、厚的未饱和带中的水流动以及不同年代的年轻水输入,都突出了混合的多样性。地下水MRT与水文化学浓度之间的强相关性,使得在断层影响的水力降落冲积层含水层中,MRT的首要代理范围为19到101年。此外,本研究表明,在曼阿斯河流域这个具有厚未饱和带的干旱地区,CFCs估算的MRT更适合作为年龄代理,而不是3H估算的MRT。