雅可比矩阵 J ( q ) J(q) J(q) 可以看成是关节空间的速度矢量 q ˙ \dot{q} q˙ 向笛卡尔空间的速度矢量 x ˙ \dot{x} x˙ 的线性映射。雅可比矩阵 J ( q ) J(q) J(q) 依赖于机器人的构形,是一个依赖于 q q q 的线性变换矩阵,雅可比矩阵 J ( q ) J(q) J(q) 不一定是方阵,它可能是长矩阵,也可能是高矩阵, J ( q ) J(q) J(q) 的行数等于机器人在笛卡尔空间中的自由度数,比如平面操作臂的雅可比矩阵有3行,6关节的空间操作臂的雅可比矩阵是6行,对于 n n n 关节的机器人,其雅可比矩阵 J ∈ ℜ 6 × n J\in \Re ^{6 \times n} J∈ℜ6×n 是 6 × n 6 \times n 6×n的矩阵,其中前3行表示对末端执行器线速度 v v v 的传递比,后3行表示对末端执行器角速度 w w w 的传递比。
另一方面,每一列代表相应的关节速度
q
i
˙
\dot{q_{i}}
qi˙ 对末端执行器线速度和角速度的传递比。
x
˙
=
J
(
q
)
q
˙
(1)
\dot{x}=J(q)\dot{q} \tag{1}
x˙=J(q)q˙(1)
[ v w ] = [ J l 1 J l 2 J l 3 J l 4 J l 5 J l 6 J a 1 J a 2 J a 3 J a 4 J a 5 J a 6 ] [ q 1 ˙ q 2 ˙ q 3 ˙ q 4 ˙ q 5 ˙ q 6 ˙ ] (2) \begin{bmatrix} v\\ w \end{bmatrix}=\begin{bmatrix} J_{l1} & J_{l2} & J_{l3} & J_{l4} & J_{l5} & J_{l6}\\ J_{a1} & J_{a2} & J_{a3} & J_{a4} & J_{a5} & J_{a6} \end{bmatrix}\begin{bmatrix} \dot{q_{1}}\\ \dot{q_{2}}\\ \dot{q_{3}}\\ \dot{q_{4}}\\ \dot{q_{5}}\\ \dot{q_{6}} \end{bmatrix} \tag{2} [vw]=[Jl1Ja1Jl2Ja2Jl3Ja3Jl4Ja4Jl5Ja5Jl6Ja6] q1˙q2˙q3˙q4˙q5˙q6˙ (2)
{
v
=
J
l
1
q
1
˙
+
J
l
2
q
2
˙
+
J
l
3
q
3
˙
)
+
J
l
4
q
4
˙
+
J
l
5
q
5
˙
+
J
l
6
q
6
˙
w
=
J
a
1
q
1
˙
+
J
a
2
q
2
˙
+
J
a
3
q
3
˙
+
J
a
4
q
4
˙
+
J
a
5
q
5
˙
+
J
a
6
q
6
˙
(3)
\left\{\begin{matrix} v=J_{l1}\dot{q_{1}} + J_{l2}\dot{q_{2}} + J_{l3}\dot{q_{3}}) + J_{l4}\dot{q_{4}} + J_{l5}\dot{q_{5}} + J_{l6}\dot{q_{6}} \\ w=J_{a1}\dot{q_{1}} + J_{a2}\dot{q_{2}} + J_{a3}\dot{q_{3}} + J_{a4}\dot{q_{4}} + J_{a5}\dot{q_{5}} + J_{a6}\dot{q_{6}} \end{matrix}\right. \tag{3}
{v=Jl1q1˙+Jl2q2˙+Jl3q3˙)+Jl4q4˙+Jl5q5˙+Jl6q6˙w=Ja1q1˙+Ja2q2˙+Ja3q3˙+Ja4q4˙+Ja5q5˙+Ja6q6˙(3)
公式(3)中,
J
l
i
J_{li}
Jli 和
J
a
i
J_{ai}
Jai 分别表示关节
i
i
i 的单位关节速度引起的末端执行器的线速度和角速度。
下面基于矢量积法,不求导而直接构造出 J l i J_{li} Jli 和 J a i J_{ai} Jai。
Whitney于1972年提出雅可比矩阵的矢量积构造方法。线速度和角速度分别使用 v v v 和 w w w 来表示。而 v v v 和 w w w 与关节速度 q i ˙ \dot{q_{i}} qi˙ 有关。
(1) 对于移动关节
i
i
i,在末端执行器上产生与
z
i
z_{i}
zi 相同的线速度
v
v
v 。
[
v
w
]
=
[
z
i
0
]
q
i
˙
⇒
J
i
=
[
z
i
0
]
(4)
\begin{bmatrix} v\\ w \end{bmatrix}=\begin{bmatrix} z_{i}\\ 0 \end{bmatrix}\dot{q_{i}} \Rightarrow J_{i}=\begin{bmatrix} z_{i}\\ 0 \end{bmatrix} \tag{4}
[vw]=[zi0]qi˙⇒Ji=[zi0](4)
(2) 对于旋转关节
i
i
i ,在末端执行器上产生的角速度
w
w
w 为:
w
=
z
i
q
i
˙
(5)
w=z_{i}\dot{q_{i}} \tag{5}
w=ziqi˙(5)
同时在末端执行器上产生的线速度为矢量积,即:
v
=
(
z
i
×
i
p
n
0
)
q
˙
i
(6)
v=(z_{i} \times {^{i}p^{0}_{n}}) \dot{q}_{i} \tag{6}
v=(zi×ipn0)q˙i(6)
因此,雅可比矩阵的第
i
i
i 列为:
J
i
=
[
z
i
×
i
p
n
0
z
i
]
=
[
z
i
×
(
i
0
R
i
p
n
)
z
i
]
(7)
J_{i}=\begin{bmatrix} z_{i} \times {^{i}p^{0}_{n}}\\ z_{i} \end{bmatrix}=\begin{bmatrix} z_{i} \times ({^{0}_{i}R {^{i}p_{n}}})\\ z_{i} \end{bmatrix} \tag{7}
Ji=[zi×ipn0zi]=[zi×(i0Ripn)zi](7)
其中,
z
i
z_{i}
zi 是坐标系 {
i
i
i} 的 z 轴单位矢量(在基座坐标系{0}中表示)。
公式(7)中,
i
p
n
0
^{i}p^{0}_{n}
ipn0 表示末端执行器坐标原点想对于坐标系 {
i
i
i} 的位置矢量在基坐标系{
0
0
0}中的表示,即:
i
p
n
0
=
i
0
R
i
p
n
(8)
^{i}p^{0}_{n}={^{0}_{i}R{^{i}p_{n}}} \tag{8}
ipn0=i0Ripn(8)
有时,要求沿着工具坐标系的某轴进行控制,因此需要将线速度和角速度在工具坐标系{
T
T
T}中进行表示。为此,需要在
v
v
v 和
w
w
w 前乘以
3
×
3
3\times3
3×3 的旋转矩阵
n
0
R
T
^{0}_{n}R^{T}
n0RT,即:
[
n
v
n
w
]
=
[
n
0
R
0
0
n
0
R
T
]
[
v
w
]
=
[
n
0
R
0
0
n
0
R
T
]
J
(
q
)
q
˙
=
T
J
(
q
)
q
˙
(9)
\begin{bmatrix} ^{n}v\\ ^{n}w \end{bmatrix}=\begin{bmatrix} ^{0}_{n}R & 0\\ 0 & ^{0}_{n}R^{T} \end{bmatrix}\begin{bmatrix} v\\ w \end{bmatrix}=\begin{bmatrix} ^{0}_{n}R & 0\\ 0 & ^{0}_{n}R^{T} \end{bmatrix}J(q)\dot{q}={^{T}J(q)\dot{q}} \tag{9}
[nvnw]=[n0R00n0RT][vw]=[n0R00n0RT]J(q)q˙=TJ(q)q˙(9)
公式(9)中,
T
J
(
q
)
{^{T}J(q)}
TJ(q)表示在工具坐标系{
T
T
T}中的雅可比矩阵。
——————————————————————————-——————————————————————
G . P a n G.Pan G.Pan 先生原创文章,禁止抄袭,转载请注明出处,谢谢
3351

被折叠的 条评论
为什么被折叠?



