IRB2600的改进D-H法
建立IRB2600的改进D-H模型:

IRB2600的改进D-H参数表:
轴号 i i i | α i − 1 \alpha_{i-1} αi−1 | a i − 1 a_{i-1} ai−1 | d i d_{i} di | θ i \theta_{i} θi |
---|---|---|---|---|
1 | 0 | 0 | d 1 ( 445 ) d_{1}(445) d1(445) | θ 1 \theta_{1} θ1 |
2 | − 9 0 ∘ -90^{\circ} −90∘ | a 1 ( 150 ) a_{1}(150) a1(150) | 0 | θ 2 + 9 0 ∘ \theta_{2}+90^{\circ} θ2+90∘ |
3 | 0 | a 2 ( − 700 ) a_{2}(-700) a2(−700) | 0 | θ 3 \theta_{3} θ3 |
4 | 9 0 ∘ 90^{\circ} 90∘ | a 3 ( − 115 ) a_{3}(-115) a3(−115) | d 4 ( 795 ) d_{4}(795) d4(795) | θ 4 \theta_{4} θ4 |
5 | − 9 0 ∘ -90^{\circ} −90∘ | 0 | 0 | θ 5 \theta_{5} θ5 |
6 | 9 0 ∘ 90^{\circ} 90∘ | 0 | d 6 ( 85 ) d_{6}(85) d6(85) | θ 6 \theta_{6} θ6 |
则机器人的运动学可以公式为:
T 0 6 = [ n x o x a x p x n y o y a y p y n z o z a z p z 0 0 0 1 ] = T 1 0 ⋅ T 2 1 ⋅ T 3 2 ⋅ T 4 3 ⋅ T 5 4 ⋅ T 6 5 (1) \mathbf{T}^{6}_{0}=\begin{bmatrix} n_x & o_x & a_x & p_x\\ n_y & o_y & a_y & p_y\\ n_z & o_z & a_z & p_z\\ 0 & 0 & 0 & 1 \end{bmatrix} ={
{\mathbf{T}^{0}_{1}}\cdot{\mathbf{T}^{1}_{2}}\cdot{\mathbf{T}^2_{3}}\cdot{\mathbf{T}^3_{4}}\cdot{\mathbf{T}^4_{5}}\cdot{\mathbf{T}^5_{6}}} \tag{1} T06=
nxnynz0oxoyoz0axayaz0pxpypz1
=T10⋅T21⋅T32⋅T43⋅T54⋅T65(1)
其中:
T i − 1 i = [ cos ( θ i ) − sin ( θ i ) 0 a i − 1 sin ( θ i ) cos ( α i − 1 ) cos ( θ i ) cos ( α i − 1 ) − sin ( α i − 1 ) − d i sin ( α i − 1 ) sin ( θ i ) sin ( α i − 1 ) cos ( θ i ) sin ( α i − 1 ) cos ( α i − 1 ) d i cos ( α i − 1 ) 0 0 0 1 ] (2) \mathbf{T}_{i-1}^{i}=\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_{i}) & 0 & a_{i-1}\\ \sin(\theta_{i})\cos(\alpha_{i-1}) & \cos(\theta_{i})\cos(\alpha_{i-1}) & -\sin(\alpha_{i-1}) & -d_i\sin(\alpha_{i-1}) \\ \sin(\theta_{i})\sin(\alpha_{i-1}) & \cos(\theta_{i})\sin(\alpha_{i-1}) & \cos(\alpha_{i-1}) & d_i\cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \tag{2} Ti−1i=
cos(θi)sin(θi)cos(αi−1)sin(θi)sin(αi−1)0−sin(θi)cos(θi)cos(αi−1)cos(θi)sin(αi−1)00−sin(α