人工智能咨询培训老师叶梓 转载标明出处
在计算机视觉领域,视频理解一直是一个核心研究方向,它要求算法能够捕捉视频中的时空动态以定位活动或推断其演变。随着深度学习技术的发展,研究者们探索了多种架构,如递归神经网络(RNN)、三维卷积神经网络(3D CNN)和Transformers,以期更好地理解视频内容。
一种名为状态空间模型(State Space Model, SSM)的新架构引起了研究者的关注,尤其是Mamba模型,它在长序列建模方面展现出了巨大的潜力。鉴于其在自然语言处理(NLP)领域的成功,研究者们开始探索Mamba模型在视频理解领域的应用前景。
由南京大学、上海人工智能实验室等机构的研究人员联合提出了将Mamba模型应用于视频理解的全面研究。
Mamba模型通过将时变参数引入状态空间模型,并提出了一种硬件感知算法,以实现高效的训练和推理。这种模型在处理长视频时展现出了良好的扩展性能,表明它可能是Transformers的一个有前景的替代方案。
图1在论文中展示了Video Mamba Suite的架构概览,这是一个由14个状态空间模型(SSM)模型/模块组成的套件,旨在处理12种不同的视频理解任务。该图反映了Mamba模型在视频建模中的四种不同角色:时间模型、时间模块、多模态交互网络和空间-时间模型。通过在13个主要数据集上进行广泛的实验,全面评估了Mamba在视频理解领域的潜力和效果,探索了其作为一种高效、高性能的视频处理替代方案的可能性。
想要掌握如何将大模型的力量发挥到极致吗?叶老