YOLOv5改进系列(十三) 引入用于低分辨率图像和小物体的模块SPD-Conv

解读

文章目录

  • 1 摘要精读
  • 2 SPD-Conv原理
    • 2.1 Space-to-depth(SPD)
  • 3 如何使用SPD-Conv
    • 3.1 检测:Yolov5改进方式
    • 3.2 分类:ResNet改进方式
  • 4 论文实验结果
    • 4.1 目标检测
    • 4.2 图像分类
  • 5 YOLOv5官方项目改进教程

在这里插入图片描述

论文地址:https://arxiv.org/pdf/2208.03641v1.pdf
代码地址:https://github.com/labsaint/spd-conv

卷积神经网络(CNN)在图像分类、目标检测等计算机视觉任务中取得了巨大的成功。然而,在图像分辨率较低或对象较小的更困难的任务中,它们的性能会迅速下降。
这源于现有CNN体系结构中一个有缺陷但却很常见的设计,即使用strided convolution和/或池化层,这导致了细粒度信息的丢失和较低效率的特征表示的学习。为此,我们提出了一种新的CNN模块,称为SPD-Conv,以取代每个strided convolution和每个池化层(从而完全消除了它们)。SPD-Convspace-

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值