文章目录
- 1 摘要精读
- 2 SPD-Conv原理
- 2.1 Space-to-depth(SPD)
- 3 如何使用SPD-Conv
- 3.1 检测:Yolov5改进方式
- 3.2 分类:ResNet改进方式
- 4 论文实验结果
- 4.1 目标检测
- 4.2 图像分类
- 5 YOLOv5官方项目改进教程
![]()
论文地址:https://arxiv.org/pdf/2208.03641v1.pdf
代码地址:https://github.com/labsaint/spd-conv
卷积神经网络(CNN
)在图像分类、目标检测等计算机视觉任务中取得了巨大的成功。然而,在图像分辨率较低或对象较小的更困难的任务中,它们的性能会迅速下降。
这源于现有CNN
体系结构中一个有缺陷但却很常见的设计,即使用strided convolution
和/或池化层
,这导致了细粒度信息的丢失和较低效率的特征表示的学习。为此,我们提出了一种新的CNN
模块,称为SPD-Conv
,以取代每个strided convolution
和每个池化层
(从而完全消除了它们)。SPD-Conv
由 space-