deepseek常见的指令介绍20种

DeepSeek 常见的 20 种指令如下1:

  1. 生成文章 / 大纲:请生成一篇关于(主题)的科普文章,结构清晰,分段落。
  2. 创作故事 / 诗歌:以(主题 / 风格)创作一个短篇故事,包含转折和对话。
  3. 代码生成:用 Python 写一个爬虫脚本,抓取网页标题并保存为 CSV。
  4. 翻译与润色:将以下中文翻译成英文,保持学术严谨……
  5. 生成表格:用表格对比 iOS 和 Android 系统的优缺点,分 5 个维度。
  6. 总结内容:用 3 句话总结这篇长文的核心理念……
  7. 解释概念:用通俗语言解释量子计算机的工作原理。
  8. 分步骤解答:分步骤说明如何从零开始搭建个人博客网站。
  9. 数据计算:计算复利投资,本金 10 万,年化 5%,持续 20 年后的总收益。
  10. 比较差异:对比深度学习和机器学习的异同,用列表展示。
  11. 调整回答长度:请用 200 字以内简要回答这个问题。
  12. 切换专业领域:以经济学家的视角分析人口老龄化对经济的影响。
  13. 模拟对话角色:你是一名面试官,向我提出 5 个数据分析岗位的技术问题。
  14. 调整语气风格:用轻松幽默的方式解释如何避免拖延症。
  15. 检查逻辑错误:检查以下论述是否有矛盾……
  16. Markdown 排版:用 Markdown 格式输出一份会议纪要模板。
  17. 生成示例模板:提供一份产品需求文档(PRD)的标准结构模板。
  18. 多语言支持:用日语写一封商务合作邀约邮件,主题为 AI 技术交流。
  19. 扩展 / 缩写内容:将以下要点扩展成 500 字的报告……
  20. 模拟场景互动:模拟一场关于 AI 伦理的辩论,你持反方观点。

<think>好的,用户询问如何在本地安装和配置DeepSeek模型或工具。我需要先回顾之前提供的引用内容。根据引用[^1],步骤包括安装Ollama,然后部署DeepSeek模型,最后与模型对话。不过,用户可能还需要更详细的指导,比如系统要求、具体安装命令、常见问题解决等。 首先,我需要确认Ollama的安装步骤是否适用不同操作系统。例如,在Linux、macOS和Windows上的安装方法可能有差异。需要分步骤说明,确保用户能按系统找到相应指令。 其次,部署DeepSeek模型的具体命令是什么?可能需要使用`ollama run`命令,但用户可能不清楚模型的确切名称,比如是deepseek-chat还是其他版本。需要明确给出示例命令,并说明如何验证安装是否成功。 另外,用户可能会遇到依赖项问题,比如是否需要有NVIDIA显卡和CUDA支持。这部分需要提前说明系统要求,帮助用户检查环境是否满足。 最后,常见问题如网络连接问题、模型下载失败或运行错误,应该提供解决方法,比如检查网络、更新驱动或查阅文档。同时,提醒用户参考官方资源获取最新信息也是必要的。 需要确保回答结构清晰,分步骤讲解,并且涵盖可能的问题点。同时,按照用户要求,生成相关问题,帮助用户进一步了解相关内容。</think>以下是 DeepSeek 模型本地部署的详细步骤说明,根据引用内容整理: ### 一、系统要求 1. 支持的操作系统:Windows 10/11、macOS、Linux(建议Ubuntu 20.04+) 2. 硬件建议:至少16GB内存,NVIDIA显卡(需支持CUDA 11.0+) 3. 存储空间:模型文件通常需要10-30GB空间 ### 二、安装部署流程 1. **安装Ollama框架**(跨平台模型运行环境) ```bash # Linux/macOS 安装命令 curl -fsSL https://ollama.com/install.sh | sh # Windows 使用安装包 下载地址:https://ollama.com/download ``` 2. **验证Ollama安装** ```bash ollama --version # 应显示版本号如0.1.20 ``` 3. **部署DeepSeek模型** ```bash # 拉取指定版本的模型(以7B参数版本为例) ollama pull deepseek-chat:7b # 启动模型服务 ollama run deepseek-chat:7b ``` 4. **环境配置(可选)** ```python # Python调用示例 import ollama response = ollama.generate(model='deepseek-chat:7b', prompt='你好') print(response['response']) ``` ### 三、常见问题解决 1. **CUDA驱动问题**:需安装NVIDIA驱动和CUDA工具包,建议使用`nvidia-smi`验证驱动状态 2. **内存不足**:可尝试更小参数模型(如3B版本) 3. **模型下载失败**:检查网络连接,建议配置镜像源 ```bash export OLLAMA_HOST=镜像地址 # 如企业内网需配置私有仓库 ``` ### 四、验证部署成功 1. 通过交互式命令行测试 ```bash >>> 你好,能介绍一下自己吗? [预期响应应包含模型身份说明] ``` 2. 检查进程状态 ```bash ps aux | grep ollama # 应有ollama serve进程 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梁养浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值