一位教授跟我说:线性代数应该这样学

在这里插入图片描述

废话不多说,直接上干货!

首先,推荐一系列关于线性代数可视化的视频

3Blue1Brown的线性代数的本质
https://www.bilibili.com/video/BV1ys411472E

在这里插入图片描述

然后,推荐一个课程:
MIT的18.06课程
https://www.bilibili.com/video/BV1ix411f7Yp
在这里插入图片描述

我在很久之前找到了一份特别详细的学习笔记。这份笔记是由网友douTintin写的。现在我把它分享出来:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

获取pdf:传送门

另外,建议还在上大学的读者看看以下这本书(你上这门课或考研时可能要用到):

在这里插入图片描述

看完再与我推荐的视频对比,你会发现这本书的编排顺序有多糟糕。
在这里插入图片描述

下面这本书才是你应该花时间看的!

在这里插入图片描述

获取pdf:传送门

最后,自荐一下我翻译的一系列文章

2 线性代数(Linear Algebra)(上)
 2.1 线性方程组
 2.2 矩阵
  2.2.1 矩阵加法和乘法
  2.2.2 逆和转置
  2.2.3 与标量相乘
  2.2.4 线性方程组的紧凑表示
 2.3 线性方程组的求解
  2.3.1 特解和通解
  2.3.2 初等变换
  2.3.3 Minus-1 技巧
  2.3.4 求解线性方程组的算法
2 线性代数(Linear Algebra)(中)
 2.4 向量空间
  2.4.1 群
  2.4.2 向量空间
  2.4.3 向量子空间
 2.5 线性独立
 2.6 基和秩
  2.6.1 生成集和基
  2.6.2 秩
2 线性代数(Linear Algebra)(下)
 2.7 线性映射
  2.7.1 线性映射的矩阵表示
  2.7.2 基变换
  2.7.3 像与核
 2.8 仿射空间
  2.8.1 仿射子空间
  2.8.2 仿射映射

3 解析几何(Analytic Geometry)(上)
 3.1 范数
 3.2 内积
  3.2.1 点积
  3.2.2 一般内积
  3.2.3 对称正定矩阵
 3.3 长度和距离
 3.4 角度和正交
 3.5 标准正交基
 3.6 正交补
 3.7 函数的内积

3 解析几何(Analytic Geometry)(下)
 3.8 正交投影
  3.8.1 一维子空间(线)上的投影
  3.8.2 一般子空间上的投影
  3.8.3 Gram-Schmidt正交化
  3.8.4 仿射子空间上的投影
 3.9 旋转
  3.9.1 二维欧式向量空间中的旋转
  3.9.2 三维欧式向量空间中的旋转
  3.9.3 n维欧式向量空间中的旋转
  3.9.4 旋转的性质

4 矩阵分解(Matrix Decompositions)(上)
 4.1 行列式与迹
 4.2 特征值和特征向量
4 矩阵分解(Matrix Decompositions)(中)
 4.3 Cholesky分解
 4.4 特征分解与对角化
 4.5 奇异值分解
  4.5.1 几何图解SVD
  4.5.2 SVD的构建
  4.5.3 特征值分解 vs. 奇异值分解
4 矩阵分解(Matrix Decomposition)(下)
 4.6 矩阵逼近
 4.7 矩阵phylogeny

作者: Sheldonc Axler 描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向量空间和线性映射上,给出的证明不使用行列式,更显得简单而直观。本书把行列式的内容放在了最后讲解,开辟了一条理解线性算子结构的新途径。书中还对一些术语、结论、证明思路、提及的数家做了注释,增加了行文的趣味性,便于读者掌握核心概念和思想方法。 第 1 章 向量空间 1.1 复数 1.2 向量空间的定义 1.3 向量空间的性质 1.4 子空间 1.5 和与直和 习题 第 2 章 有限维向量空间 2.1 张成与线性无关 2.2 基 2.3 维数 习题 第 3 章 线性映射 3.1 定义与例子 3.2 零空间与值域 3.3 线性映射的矩阵 3.4 可逆性 习题 第 4 章 多项式 4.1 次数 4.2 复系数 4.3 实系数 习题 第 5 章 本征值与本征向量 5.1 不变子空间 5.2 多项式对算子的作用 5.3 上三角矩阵 5.4 对角矩阵 5.5 实向量空间的不变子空间 习题 第 6 章 内积空间 6.1 内积 6.2 范数 6.3 规范正交基 6.4 正交投影与极小化问题 6.5 线性泛函与伴随 习题 第 7 章 内积空间上的算子 7.1 自伴算子与正规算子 7.2 谱定理 7.3 实内积空间上的正规算子 7.4 正算子 7.5 等距同构 7.6 极分解与奇异值解 习题 第 8 章 复向量空间上的算子 8.1 广义本征向量 8.2 特征多项式 8.3 算子的分解 8.4 平方根 8.5 极小多项式 8.6 约当形 习题 第 9 章 实向量空间上的算子 9.1 方阵的本征值 9.2 分块上三角矩阵 9.3 特征上三角矩阵 习题 第 10 章 迹与行列式 10.1 基变换 10.2 迹 10.3 算子的行列 10.4 矩阵的行列式 10.5 体积 符号索引 索引
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值