20220621 Dual Quaternion

本文介绍了对偶数的基本概念,包括其运算规则与泰勒展开的应用,特别关注了对偶矢量在航天器控制中的应用以及对偶四元数的构造和共轭运算。通过实例展示,读者将理解这种运算如何简化数学表达并用于实际问题解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


对偶数

一、对偶数是什么?

https://zhuanlan.zhihu.com/p/358146509

对偶数是一种特殊的自洽的运算,类似于常用的复数基本单位 i i i i 2 = − 1 i^2=-1 i2=1),这里数学家们对对偶数基本单位的定义是 ϵ \epsilon ϵ ϵ 2 = 0 \epsilon^2=0 ϵ2=0 ϵ ≠ 0 \epsilon\neq0 ϵ=0)。

类似于复数的定义 a + i b a+ib a+ib,对偶数的定义为 a + ϵ b a+\epsilon b a+ϵb

基于上述定义,定义两个对偶数 d 1 = a 1 + ϵ b 1 d_1=a_1+\epsilon b_1 d1=a1+ϵb1 d 2 = a 2 + ϵ b 2 d_2=a_2+\epsilon b_2 d2=a2+ϵb2 ,按照一般的运算法则可以得到对偶数的运算:
k d 1 = ( k a 1 ) + ϵ ( k b 1 ) d 1 + d 2 = ( a 1 + a 2 ) + ϵ ( b 1 + b 2 ) d 1 d 2 = a 1 a 2 + ϵ ( a 1 b 2 + a 2 b 1 ) + ϵ 2 b 1 b 2 = a 1 a 2 + ϵ ( a 1 b 2 + a 2 b 1 ) d 1 ∗ = a 1 − ϵ b 1 ∣ d 1 ∣ = d 1 d 1 ∗ = ∣ a 1 ∣ d 1 − 1 = 1 a 1 + ϵ b 1 = a 1 − ϵ b 1 a 1 2 = 1 a 1 − ϵ b 1 a 1 2 if  a 1 ≠ 0 d 2 d 1 = a 2 + ϵ b 2 a 1 + ϵ b 1 = ( a 2 + ϵ b 2 ) ( a 1 − ϵ b 1 ) ( a 1 + ϵ b 1 ) ( a 1 − ϵ b 1 ) = a 1 a 2 + ϵ ( a 1 b 2 − a 2 b 1 ) a 1 2 = a 2 a 1 + ϵ ( b 2 a 1 − a 2 b 1 a 1 2 ) if  a 1 ≠ 0 \begin{aligned} k d_1&= (k a_1) + \epsilon (k b_1) \\ d_1+d_2 &= (a_1+a_2) + \epsilon (b_1+b_2) \\ d_1d_2 &=a_1a_2+ \epsilon (a_1b_2+a_2b_1)+\epsilon^2b_1b_2=a_1a_2+ \epsilon (a_1b_2+a_2b_1) \\ d_1^* &=a_1-\epsilon b_1 \\ |d_1| & = \sqrt{d_1d_1^*}=|a_1| \\ d_1^{-1}&=\frac{1}{a_1+\epsilon b_1}=\frac{a_1-\epsilon b_1}{a_1^2}=\frac{1}{a_1}-\epsilon\frac{b_1}{a_1^2} \quad \text{if}~ a_1\neq 0 \\ \frac{d_2}{d_1}&=\frac{a_2+\epsilon b_2}{a_1+\epsilon b_1}=\frac{(a_2+\epsilon b_2)(a_1-\epsilon b_1)}{(a_1+\epsilon b_1)(a_1-\epsilon b_1)}=\frac{a_1a_2+\epsilon(a_1b_2-a_2b_1)}{a_1^2}=\frac{a_2}{a_1}+\epsilon(\frac{b_2}{a_1}-\frac{a_2b_1}{a_1^2}) \quad \text{if}~ a_1\neq 0 \end{aligned} kd1d1+d2d1d2d1d1d11d1d2=(ka1)+ϵ(kb1)=(a1+a2)+ϵ(b1+b2)=a1a2+ϵ(a1b2+a2b1)+ϵ2b1b2=a1a2+ϵ(a1b2+a2b1)=a1ϵb1=d1d1 =a1=a1+ϵb11=a12a1ϵb1=a11ϵa12b1if a1=0=a1+ϵb1a2+ϵb2=(a1+ϵb1)(a1ϵb1)(a2+ϵb2)(a1ϵb1)=a12a1a2+ϵ(a1b2a2b1)=a1a2+ϵ(a1b2a12a2b1)if a1=0

对偶数最大的好处是泰勒展开,后面多余的项直接消失,即
f ( a + ϵ b ) = f ( a ) + ϵ b f ′ ( a ) + ϵ 2 ( …   ) = f ( a ) + ϵ b f ′ ( a ) f(a+\epsilon b)=f(a)+\epsilon b f'(a)+\epsilon^2(\dots)=f(a)+\epsilon b f'(a) f(a+ϵb)=f(a)+ϵbf(a)+ϵ2()=f(a)+ϵbf(a)因此,进一步可以得到 e a + ϵ b = e a + ϵ b e a ln ⁡ ( a + ϵ b ) = ln ⁡ ( a ) + ϵ b 1 a if  a ≠ 0 sin ⁡ ( a + ϵ b ) = sin ⁡ ( a ) + ϵ b cos ⁡ ( a ) cos ⁡ ( a + ϵ b ) = cos ⁡ ( a ) − ϵ b sin ⁡ ( a ) \begin{aligned} e^{a+\epsilon b}&=e^{a}+\epsilon b e^a \\ \ln(a+\epsilon b)&=\ln(a)+\epsilon b\frac{1}{a}\quad \text{if}~ a\neq 0 \\ \sin(a+\epsilon b)&=\sin(a)+\epsilon b \cos(a) \\ \cos(a+\epsilon b)&=\cos(a)-\epsilon b \sin(a) \end{aligned} ea+ϵbln(a+ϵb)sin(a+ϵb)cos(a+ϵb)=ea+ϵbea=ln(a)+ϵba1if a=0=sin(a)+ϵbcos(a)=cos(a)ϵbsin(a)

进一步,可以发现 f ′ ( a ) = f ( a + ϵ b ) − f ( a ) ϵ b f'(a)=\frac{f(a+\epsilon b)-f(a)}{\epsilon b } f(a)=ϵbf(a+ϵb)f(a)注意这里是直接线性化,而不是近似线性化,这个可以用来计算导数。

二、对偶矢量

翟洪民. 基于对偶四元数的航天器近距离接近位姿同步规划与控制. 哈尔滨工业大学, 2021

对偶矢量 d = a + ϵ b \boldsymbol{d}=\boldsymbol{a}+\epsilon \boldsymbol{b} d=a+ϵb a , b ∈ R n \boldsymbol{a},\boldsymbol{b}\in\mathbb{R}^n a,bRn,又有
d = [ a 1 a 2 ⋮ a n ] + ϵ [ b 1 b 2 ⋮ b n ] = [ a 1 + ϵ b 1 a 2 + ϵ b n ⋮ a n + ϵ b n ] \boldsymbol{d}=\left[\begin{array}{c} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{array}\right]+\epsilon \left[\begin{array}{c} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{array}\right]=\left[\begin{array}{c} a_1+\epsilon b_1 \\ a_2+\epsilon b_n \\ \vdots \\ a_n+\epsilon b_n \end{array}\right] d= a1a2an +ϵ b1b2bn = a1+ϵb1a2+ϵbnan+ϵbn 也就是说,它可以既被看作实数部分、对偶部分均都矢量构成的对偶数,同时又被看作以对偶数作为元素的矢量。

空间中任意一条直线可用单位对偶矢量来描述。如下图所示,直线 R \boldsymbol{R} R 可以表示为 l + ϵ m \boldsymbol{l}+\epsilon \boldsymbol{m} l+ϵm l \boldsymbol{l} l 显示直线的平行方向, m \boldsymbol{m} m 显示直线与原点的垂直距离。这里的单位对偶向量通常被称为普吕克(Plücker)直线。

在这里插入图片描述


三、对偶四元数

对偶四元数可以看作是元素为对偶数的四元数,也可以看作是元素为四元数的对偶数,即
q ^ = [ η ^ , ξ ^ ] = q + ϵ q ′ = η + ξ 1 i + ξ 2 j + ξ 3 k + ϵ ( η ′ + ξ 1 ′ i + ξ 2 ′ j + ξ 3 ′ k ) \begin{aligned}\hat{\boldsymbol q}&=[\hat{\eta},\hat{\boldsymbol{\xi}}]=\boldsymbol q+\epsilon \boldsymbol q' \\ &=\eta+\xi_1\boldsymbol{i}+\xi_2\boldsymbol{j}+\xi_3\boldsymbol{k}+\epsilon\left( \eta'+\xi_1'\boldsymbol{i}+\xi_2'\boldsymbol{j}+\xi_3'\boldsymbol{k} \right) \end{aligned} q^=[η^,ξ^]=q+ϵq=η+ξ1i+ξ2j+ξ3k+ϵ(η+ξ1i+ξ2j+ξ3k)

这里的共轭和上面的有些区别,是因为我们将其视为元素为对偶数的四元数。为什么不把它当作元素为四元数的对偶数进行求共轭,具体原因见https://blog.csdn.net/weixin_44382195/article/details/125400408?spm=1001.2014.3001.5501
q ^ ∗ = q ∗ + ϵ q ′ ∗ \hat{\boldsymbol q}^*=\boldsymbol q^*+\epsilon \boldsymbol q'^* q^=q+ϵq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值