对偶数单位 ϵ \epsilon ϵ具有幂零性
幂零性(Nilpotency)是指某个数或元素在进行多次自乘后会等于零的性质。也就是说,如果一个元素 x x x满足某个正整数 n n n使得 x n = 0 x^n = 0 xn=0,那么这个元素就具有幂零性,称为幂零元素。这种性质在代数中经常出现。
在对偶数的定义中,对偶数单位 ϵ \epsilon ϵ具有幂零性,因为:
ϵ 2 = 0 \epsilon^2 = 0 ϵ2=0
这意味着,当我们将 ϵ \epsilon ϵ自乘两次时,结果等于零。注意,这里 ϵ ≠ 0 \epsilon \neq 0 ϵ=0,但是它的平方却等于零,这就是幂零性的一个典型例子。
幂零性的作用
在对偶数的运算中,幂零性使得任何包含 ϵ 2 \epsilon^2 ϵ2或更高次幂的项都会消失。这在计算和简化对偶数表达式时非常有用。例如,在对偶数的乘法中,对偶数单位的幂零性使得乘积中的高次项为零,从而简化了计算。
例子
如果我们有一个对偶数 d = a + b ϵ d = a + b\epsilon d=a+bϵ和另一个对偶数 e = c + d ϵ e = c + d\epsilon e=c+dϵ,它们的乘积为:
d ⋅ e = ( a + b ϵ ) ( c + d ϵ ) = a c + ( a d + b c ) ϵ + b d ϵ 2 d \cdot e = (a + b\epsilon)(c + d\epsilon) = ac + (ad + bc)\epsilon + bd\epsilon^2 d⋅e=(a+bϵ)(c+dϵ)=ac+(ad+bc)ϵ+bdϵ2
由于 ϵ 2 = 0 \epsilon^2 = 0 ϵ2=0,所以最后一项 b d ϵ 2 bd\epsilon^2 bdϵ2消失,得到:
d ⋅ e = a c + ( a d + b c ) ϵ d \cdot e = ac + (ad + bc)\epsilon d⋅e=ac+(ad+bc)ϵ
总结
幂零性是一种代数性质,使得在多次自乘后得到零。在对偶数中,对偶数单位 ϵ \epsilon ϵ的幂零性 ϵ 2 = 0 \epsilon^2 = 0 ϵ2=0带来了计算的简化。这一性质在代数和应用数学的多个领域都有重要的应用。
实数部分(Primary Part)
- 定义:对于一个对偶数 d = a + b ϵ d = a + b\epsilon d=a+bϵ,其中 a a a是实数部分,它不与对偶数单位 ϵ \epsilon ϵ相乘。
- 操作符:操作符 P ( ⋅ ) P(\cdot) P(⋅)用于提取对偶数的实数部分 a a a。
例如,对于对偶数 d 1 = 10 − 239 ϵ d1 = 10 - 239\epsilon d1=10−239ϵ,执行 P ( d 1 ) P(d1) P(d1)会得到结果 10 10 10,这是该对偶数的实数部分。
P ( d ) = a P(d) = a P(d)=a
对偶数部分(Dual Part)
- 定义:对于对偶数 d = a + b ϵ d = a + b\epsilon d=a+bϵ,其中 b b b是对偶数部分,它是与对偶数单位 ϵ \epsilon ϵ相乘的项。
- 操作符:操作符 D ( ⋅ ) D(\cdot) D(⋅)用于提取对偶数的对偶数部分 b b b。
例如,对于同一个对偶数 d 1 = 10 − 239 ϵ d1 = 10 - 239\epsilon d1=10−239ϵ,执行 D ( d 1 ) D(d1) D(d1)会得到结果 − 239 -239 −239,这是该对偶数的对偶数部分。
D ( d ) = b D(d) = b D(d)=b
总结
- P ( d ) P(d) P(d)提取的是不含对偶数单位 ϵ \epsilon ϵ的部分,即实数部分。
- D ( d ) D(d) D(d)提取的是包含对偶数单位 ϵ \epsilon ϵ的部分的系数,即对偶数部分。
The neutral reference frame(中性参考系)
The neutral reference frame(中性参考系)通常指的是一个初始的、不带任何旋转或平移的坐标系。在三维空间中的计算和物体变换中,中性参考系通常是一个默认的基准位置和方向。它通常满足以下特性:
- 位置原点:原点通常位于 ( 0 , 0 , 0 ) (0, 0, 0) (0,0,0)。
- 方向标准:轴指向标准的方向,例如 x x x轴指向右、 y y y轴指向上、 z z z轴指向前。
在旋转和变换过程中,物体会以中性参考系作为初始位置进行操作。
利用共轭操作来实现逆姿态变换(Reverse Pose Transformation)。
逆姿态变换的概念
在使用对偶四元数(dual quaternion)表示的姿态变换中,逆变换可以通过求共轭来实现。这是因为单位对偶四元数具有单位模,因此对其求共轭后可以得到相反的变换,而不改变模的大小。
公式表示为:
x ‾ ⋅ x ∗ = 1 \overline{x} \cdot x^* = 1 x⋅x∗=1
对于任何单位对偶四元数 x x x,这个公式成立。
示例
在示例中,给定一个对偶四元数 x 3 x3 x3:
x 3 = ( 0.99518 + 0.098017 k ) + E ∗ ( 0.049009 + 0.99518 i − 0.098017 j − 0.49759 ) x3 = (0.99518 + 0.098017k) + E*(0.049009 + 0.99518i - 0.098017j - 0.49759) x3=(0.99518+0.098017k)+E∗(0.049009+0.99518i−0.098017j−0.49759)
对偶四元数包含了旋转和平移信息。
通过计算 x 3 ⋅ conj ( x 3 ) x3 \cdot \text{conj}(x3) x3⋅conj(x3),可以验证是否为单位对偶四元数的逆变换。结果为:
a n s = 1 ans = 1 ans=1
这表明, x 3 x3 x3与其共轭的乘积等于1,验证了单位双四元数的逆变换性质。
结论
利用共轭操作可以实现双四元数的逆姿态变换,这在机器人学、计算机图形学和姿态控制等领域非常有用,因为它可以方便地逆转旋转和平移而不改变姿态的整体模。