四元数左乘右乘_对偶四元数与刚体三维运动

本文探讨了对偶数和单位对偶四元数的概念,如何用于表示三维空间中的刚体运动。通过单位对偶四元数,可以同时描述旋转和平移,简化了三维几何变换的表达。
摘要由CSDN通过智能技术生成

73eba570676f4775055ed043ef2a58c8.png

对偶数

对偶数是一种类似于复数的特殊的数,它的集合用

表示。若
,那么
,其中
是对偶数单位,满足

对偶数的共轭记为

两个对偶数相乘的结果为:

对偶数的三角函数定义为:

单位对偶四元数

对偶四元数定义为

,这个四元数的每个分量都是对偶数。对于任意对偶四元数,我们都把它表示为

对于一种特殊的满足模为1的对偶四元数叫做单位对偶四元数,用

表示。容易证明,如果一个对偶四元数是单位四元数,那么它必然满足

我们考虑一个向量

,将它表示为对偶单位四元数
,我们将普通四元数
(或者说对偶分量为0的对偶四元数)作用于它有:

正好是将向量

做了一个旋转。

我们考虑另一个向量

,将它写成对偶四元数的形式
(注意这里有1/2),将它作用于
,也就是将
做了一个平移。

正好,我们将旋转和平移整合到一起,即

这个对偶四元数也是个对偶单位四元数,因此实际上三维空间的刚体运动可以用一个单位对偶四元数来表示,反过来,单位对偶四元数实际上就是三维空间中的刚体运动。

三维空间的几何学

一般的,单位对偶四元数可以写成:

其中

为常熟项为0的单位对偶四元数。根据对偶数的三角函数关系,可得:

根据等式(1),对应到非对偶项显然有:

且很容易根据四元数和旋转关系求得

对应到对偶项可得:

根据四元数乘法:

根据(2),(3)式,可得:

对于

,考虑到三叉积公式,可推出:

参考文献

Geometric Skinning with Approximate Dual Quaternion Blending

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值