逆透视矩阵原理以及应用(平视图转鸟瞰图、俯视图)

本文深入解析了逆透视变化(IPM)的实现原理及其在图像处理中的应用。详细介绍了刚体变换、透视投影、数字化图像等步骤,展示了如何利用相机内外参数进行坐标系之间的转换,以获取IPM图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博客:逆透视变化详解
参考论文:Lane Detector

真实世界的景象转换为数字图片的步骤流程如下图:

在这里插入图片描述

1、刚体变换

从下图中可以看到,世界坐标为(X,Y,Z)相机坐标为(Xc,Yc,Zc),而世界坐标变换到相机坐标存在一个旋转矩阵变换R以及一个位移变换T。
在这里插入图片描述
其数学公式表示如下,其中(X,Y,Z)如果写成(X,Y,Z,0),它就是个向量;如果是(X,Y,Z,1),它就是个点。而旋转和缩放对于向量和点都有意义,平移变换只对于点才有意义,因为普通向量没有位置概念,只有大小和方向.
在这里插入图片描述
如果假设不存在坐标平移,可以简化公式为:
在这里插入图片描述
关于R下面有对应的旋转情况:

(1)、绕X轴旋转
在这里插入图片描述
(2)、绕Y轴旋转
在这里插入图片描述
(3)、绕Z轴旋转
在这里插入图片描述

2、透视投影

在这里插入图片描述根据上述的关系我们可以推得:
在这里插入图片描述
矩阵形式为:
在这里插入图片描述

3、数字化图像

数字图像在计算机内为M*N的数组,M行N列的图像中每一个元素(pixel)数值就是图像点的亮度(灰度)。
如图,在图像上定义直角坐标系U,V,每一个像素为单位的图像坐标系坐标,
由于(u,v)只能表示像素位于数组中的列数与行数,并没有使用物理单位表示该像素在图像中位置,所以需要再建立以物理单位(mm)表示的图像坐标系,该图像坐标系以图像内某一点xy(0,0)为原点,x轴和y轴分别平行于u、v。
在这里插入图片描述
如图中,(u、v)表示以像素为单位的图像坐标系的坐标,(X、Y)表示以mm为单位的图像坐标系的坐标。
假设每一个像素在X轴与Y轴方向上的物理尺寸为dx、dy,则图像任意一个像素在两个坐标系下的坐标有如下关系:
在这里插入图片描述
其中分别表示xy坐标系原点在uv坐标系中的位置。

进而得到如下的矩阵表达:
在这里插入图片描述

4、整体变换的示意图(未考虑畸形校正)

在这里插入图片描述

5、原理应用

在这里插入图片描述IPM坐标
左:坐标轴(世界,相机和图像坐标系)。 右:定义俯仰α和偏航β角。

为了获得输入图像的IPM,我们使用相机内参(焦距和光学中心)和外部(俯仰角,偏航角和地面高度)参数来执行此转换。如图所示, 我们首先定义一个世界坐标系{Fw} = {Xw,Yw,Zw}(以相机光学中心为中心),相机坐标系{Fc} ={Xc,Yc,Zc},以及图像坐标系{Fi} = {u,v}。 我们假设相机框坐标系的Xc轴停留在世界坐标系XwYw平面中,且相机只存在俯仰角α(上下)和偏转角β(左右)但没有滚动。 相机坐标系中心在地平面上方的高度为h。

IPM转换的步骤为:
在这里插入图片描述图片到世界坐标系的转换矩阵为
在这里插入图片描述
h为高度,
fu、fv为相机焦距
cu、cv为相机光学中心
c1 = np.cos(cameraInfo[5] * np.pi / 180)
s1 = np.sin(cameraInfo[5] * np.pi / 180)
c2 = np.cos(cameraInfo[6] * np.pi / 180)
s2 = np.sin(cameraInfo[6] * np.pi / 180)
这是我的相机参数CameraInfo=[cameraInfo_focalLengthX,cameraInfo_focalLengthY,cameraInfo_opticalCenterX,cameraInfo_opticalCenterY,cameraInfo_pitch,cameraInfo_yaw,cameraInfo_imageWidth,cameraInfo_imageHeight]

世界坐标系到图片坐标系的转换矩阵
在这里插入图片描述
参数同上

消失点的求取:
在这里插入图片描述

效果(自己的相机、自己的图片)
在这里插入图片描述
在这里插入图片描述

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值