【GAMES201学习笔记】01- 拉格朗日视角

1. 拉格朗日视角 vs 欧拉视角

拉格朗日视角:其中的元素跟随一起移动。

欧拉视角 :其中的元素固定在对应的地方,网格的点对应的速度。

screenShot.png

2. 弹簧质点系统

胡克定律

f i j = − k ( ∥ x i − x j ∥ 2 l i j ) x i j ^ f i = ∑ j j ≠ i f i j \begin{aligned} \bold{f}_{ij} &= -k(\Vert \bold{x}_i - \bold{x}_j \Vert_2 l_{ij})\hat{\bold{x}_{ij}} \\ \bold{f}_i &= \sum^{j \neq i}_j {\bold{f}_{ij}} \end{aligned} fijfi=k(xixj2lij)xij^=jj=ifij

牛顿第二定律

∂ v i ∂ t = 1 m i f i ∂ x i ∂ t = v i \begin{aligned} \cfrac{\partial \bold{v}_i}{\partial t} &= \cfrac{1}{m_i}\bold{f}_i \\ \cfrac{\partial \bold{x}_i}{\partial t} &= \bold{v}_i \end{aligned} tvitxi=mi1fi=vi

2.1 时间积分

前欧拉(显式)积分器 :根据现有状态推测以后的状态

v t + 1 = v t + Δ t f t m x t + 1 = x t + Δ t v t \begin{aligned} \bold{v}_{t+1} &= \bold{v}_t + \Delta t \cfrac{\bold{f}_t}{m} \\ \bold{x}_{t+1} &= \bold{x}_t + \Delta t \bold{v}_t \\ \end{aligned} vt+1xt+1=vt+Δtmft=xt+Δtvt

半隐式欧拉积分器 :根据现有状态推测以后的状态,速度根据推测出的速度计算

v t + 1 = v t + Δ t f t m x t + 1 = x t + Δ t v t + 1 \begin{aligned} \bold{v}_{t+1} &= \bold{v}_t + \Delta t \cfrac{\bold{f}_t}{m} \\ \bold{x}_{t+1} &= \bold{x}_t + \Delta t \bold{v}_{t+1} \\ \end{aligned} vt+1xt+1=vt+Δtmft=xt+Δtvt+1

2.2 代码

  1. 计算速度: v t + 1 = v t + Δ t f t m \bold{v}_{t+1} = \bold{v}_t + \Delta t \cfrac{\bold{f}_t}{m} vt+1=vt+Δtmft
  2. 与地面碰撞(防止计算位移之后陷入地下)
  3. 计算位移: x t + 1 = x t + Δ t v t + 1 \bold{x}_{t+1} = \bold{x}_t + \Delta t \bold{v}_{t+1} xt+1=xt+Δtvt+1
@ti.kernel
def substep():
    # Compute force and new velocity
    n = num_particles[None]
    for i in range(n):

        v[i] *= ti.exp(-dt * damping[None]) # 阻尼
        total_force = ti.Vector(gravity) * particle_mass
        
        for j in range(n):
            # 两个粒子有弹簧时
            if rest_length[i, j] != 0:
                x_ij = x[i] - x[j]
                total_force += -spring_stiffness[None] * (x_ij.norm() - rest_length[i, j]) * x_ij.normalized()
        v[i] += dt * total_force / particle_mass
        
    # Collide with ground
    for i in range(n):
        if x[i].y < bottom_y:
            x[i].y = bottom_y
            v[i].y = 0

    # Compute new position
    for i in range(num_particles[None]):
        x[i] += v[i] * dt

NOTE

  • 其中 Δ t \Delta t Δt 需要满足一下情况:
    Δ t = c m k ( c ∼ 1 ) \Delta t = c\sqrt{\cfrac{m}{k}} (c \sim 1) Δt=ckm (c1)

2.3 质点系统

隐式时间积分 :

x t + 1 = x t + Δ t v t + 1 v t + 1 = v t + Δ t M − 1 f ( x t + 1 ) \begin{aligned} \bold{x}_{t+1} &= \bold{x}_t + \Delta t \bold{v}_{t+1} \\ \bold{v}_{t+1} &= \bold{v}_t + \Delta t \bold{M}^{-1}\bold{f}(\bold{x}_{t+1}) \\ \end{aligned} xt+1vt+1=xt+Δtvt+1=vt+ΔtM1f(xt+1)

NOTE :其中 $ \bold{M} $ 是质量矩阵。

消除 x t + 1 \bold{x}_{t+1} xt+1

v t + 1 = v t + Δ t M − 1 f ( x t + Δ t v t + 1 ) \bold{v}_{t+1} = \bold{v}_t + \Delta t \bold{M}^{-1}\bold{f}(\bold{x}_t + \Delta t \bold{v}_{t+1}) \\ vt+1=vt+ΔtM1f(xt+Δtvt+1)

线性化(牛顿法的一步):

v t + 1 = v t + Δ t M − 1 [ f ( x t ) + ∂ f ∂ x ( x t ) Δ t v t + 1 ] \bold{v}_{t+1} = \bold{v}_t + \Delta t \bold{M}^{-1} \left[ {\bold{f}(\bold{x}_t) + \cfrac{\partial \bold{f}}{\partial \bold{x}}(\bold{x}_t)\Delta t\bold{v}_{t+1} } \right] vt+1=vt+ΔtM1[f(xt)+xf(xt)Δtvt+1]

3. 形变

形变映射 ϕ \phi ϕ :静止材料位置 ↦ \mapsto 形变材料位置

x d e f o r m e d = ϕ ( x r e s t ) \bold{x_{deformed}} = \phi (\bold{x_{rest}}) xdeformed=ϕ(xrest)

形变梯度 F \bold{F} F

F ≔ ∂ x d e f o r m e d ∂ x r e s t \bold{F} \coloneqq \cfrac{\partial \bold{x_{deformed}}}{\partial \bold{x_{rest}}} F:=xrestxdeformed

Note

  • 平移过程中形变梯度保持不变: ϕ 1 = ϕ ( x r e s t ) \phi_1 = \phi(\bold{x_{rest}}) ϕ1=ϕ(xrest) ϕ 1 = ϕ ( x r e s t ) + c \phi_1 = \phi(\bold{x_{rest}}) + c ϕ1=ϕ(xrest)+c 有相同的形变梯度

变形/静止体积比 J J J

J = det ⁡ ( F ) J = \det(\bold{F}) J=det(F)

Note

  • 三维空间中,矩阵行列式的性质,即体积变化倍数

4. 弹性体

4.1 超弹性体(Hyperelasticity)

超弹性材料:应力 – 应变关系应变能密度函数 定义 :

Ψ = Ψ ( F ) \Psi = \Psi(\bold{F}) Ψ=Ψ(F)

直观理解: Ψ \Psi Ψ 是惩罚形变的势函数。

应力 :材料的内部弹性力。

应变 :现在用 形变梯度 F \bold{F} F 代替。

Note

  • Ψ \Psi Ψ 是应变能量密度函数
  • ϕ \phi ϕ 是形变映射

4.2 应力张量

应力:代表材料微元施加在其周围为材料微元的内力。

4.2.1 三种常用的应力张量

  • Piola - Kirchhoff 应力张量PK1):
    P ( F ) = ∂ Ψ ( F ) ∂ F \bold{P(F)} = \cfrac{\partial \Psi(\bold{F})}{\partial \bold{F}} P(F)=FΨ(F)
    (计算简单,是在静止空间计算,需要变换到形变空间)
     
  • 基尔霍夫应力(Kirchhoff stress) τ \tau τ
     
  • 柯西应力张量(Cauchy stress tensor) σ \sigma σ
    (对称,因为角动量守恒)

4.2.2 关系式

  • τ = J σ = P F T \tau = J\sigma = \bold{PF}^T τ=Jσ=PFT
  • P = J σ F − T \bold{P} = J\sigma\bold{F}^{-T} P=JσFT

Note

  • F − T \bold{F}^{-T} FT :补偿材料变形
  • F − T \bold{F}^{-T} FT 替代 F − 1 \bold{F}^{-1} F1 :因为变换的是法向量 n \bold{n} n 而不是 x \bold{x} x

4.2.3 牵引力

  • t = σ T n \bold{t} = \sigma^T\bold{n} t=σTn

直观来说,将法向量乘以应力张量即可获得材料向周围微元施加的力。

4.3 弹性模量(各向同性材料)

  • 杨氏模量 :应力张量与应变张量的比值
    E = σ ϵ E = \cfrac{\sigma}{\epsilon} E=ϵσ

  • 体积模量 :压强关于体积的变化,常用于液体
    K = − V d P d V K = - V \cfrac{dP}{dV} K=VdVdP

  • 泊松比
    ν ∈ [ 0.0 , 0.5 ) \nu \in [0.0,0.5) ν[0.0,0.5)

Note

  • 辅助项具有负泊松比;
  • 泊松比为 0 时,拉长物体时,截面积不会发生变化;
  • 泊松比较大时,物体会尽量保持体积不变,例如在拉长物体时,物体会变细。

拉梅常数(Lamé parameters)

  • Lamé 第一参数: λ \lambda λ
    表示材料的压缩性,等价与体弹性模量或者杨氏模量
     
  • Lamé 第二参数: μ \mu μ
    表示材料的剪切模量,用 G 表示

换算公式

  • K = E 3 ( 1 − 2 ν ) K = \cfrac{E}{3(1 - 2\nu)} K=3(12ν)E (常用于可压缩液体)
     
  • λ = E ν ( 1 + ν ) ( 1 − 2 ν ) \lambda = \cfrac{E\nu}{(1 + \nu)(1 - 2\nu)} λ=(1+ν)(12ν)Eν
     
  • μ = E 2 ( 1 + ν ) \mu = \cfrac{E}{2(1 + \nu)} μ=2(1+ν)E

广义胡克定律 :均匀和各向同性的材料

σ = 2 μ ϵ + λ t r ( ϵ ) \sigma = 2 \mu \epsilon + \lambda tr(\epsilon) σ=2μϵ+λtr(ϵ)

5. 常见的超弹性模型

  • 经典的 MPM 方法将每个粒子看做材料的一个微元,材料的本构模型会有一个能量密度函数 Ψ \Psi Ψ
  • 对能量密度函数 Ψ \Psi Ψ 关于整个模型求积分,得到整个材料的势能;
  • 势能对材料点的形变梯度进行求导: P ( F ) = ∂ Ψ ∂ F P(\bold{F}) = \cfrac{\partial \Psi}{\partial \bold{F}} P(F)=FΨ
  • 物理意义上来说,势能对位置求导的结果就是力, P ( F ) P(\bold{F}) P(F) 可以看做材料点的受力。

6.1 Neo-Hookean 模型

适用于各向同性材料

  • Ψ ( F ) = μ 2 ∑ i [ ( F T F ) i i − 1 ] − μ log ⁡ ( J ) + λ 2 log ⁡ 2 ( J ) \Psi(\bold{F}) = \cfrac{\mu}{2} \sum_i [(\bold{F}^T\bold{F})_{ii} - 1] - \mu \log(J) + \cfrac{\lambda}{2} \log^2(J) Ψ(F)=2μi[(FTF)ii1]μlog(J)+2λlog2(J)
     
  • P ( F ) = ∂ Ψ ∂ F = μ ( F − F T ) + λ log ⁡ ( J ) F − T P(\bold{F}) = \cfrac{\partial \Psi}{\partial \bold{F}} = \mu(\bold{F} - \bold{F}^T) + \lambda\log(J)\bold{F}^{-T} P(F)=FΨ=μ(FFT)+λlog(J)FT

因为 Neo-Hookean 模型容易造成能量流失,这时可以考虑 Corotated 模型。

FEM 中应用 Neo-Hookean 模型的示例代码

dim = 2

E, nu = 1000, 0.3
la = E * nu / ((1 + nu) * (1 - 2 * nu))
mu = E / (2 * (1 + nu))

element_V = 0.01

x = ti.Vector(dim, dt=real, shape=n_nodes, needs_grad=True)
v = ti.Vector(dim, dt=real, shape=n_nodes)

total_energy = ti.var(dt=real, shape=(), needs_grad=True)

# 计算势能
@ti.kernel
def compute_total_energy():
    for i in range(n_elements):
        ......# get F
        # NeoHookean
        I1 = (F @ F.transpose()).trace()
        # 防止 J 的值过小引起错误
        J = max(0.2, F.determinant())
        element_energy_density = 0.5 * mu * (I1 - dim) - mu * ti.log(J) + 0.5 * la * ti.log(J)**2
        total_energy[None] += element_energy_density * element_V

# 渲染循环
while True:
    for s in range(30):
        # 调用 taichi 的自动微分器
        # 定义的损失函数:compute_total_energy()
        # 函数值:total_energy
        # 变量值:x
        # 微分结果(i 点上的力) :x.grad[i]
        # f = - \partial (total_energy) / \partial x
        with ti.Tape(total_energy):
            compute_total_energy()
        ......

Note

  • 在 FEM 中的势能(后续有详细说明):

U ( e ) = ∫ e Ψ ( F ( x ) ) d x = V e Ψ ( F e ) U(e) = \int_e\bold{\Psi(F(x))\mathrm{d}x} = V_e\bold{\Psi(F_e)} U(e)=eΨ(F(x))dx=VeΨ(Fe)

6.2 (Fixed)Corotated 模型

  • Ψ ( F ) = μ ∑ i ( σ i − 1 ) 2 + λ 2 ( J − 1 ) 2 \Psi(\bold{F}) = \mu \sum_i(\sigma_i - 1)^2 + \cfrac{\lambda}{2}(J - 1)^2 Ψ(F)=μi(σi1)2+2λ(J1)2
     
  • P ( F ) = ∂ Ψ ∂ F = 2 μ ( F − R ) + λ ( J − 1 ) J F − T P(\bold{F}) = \cfrac{\partial \Psi}{\partial \bold{F}} = 2\mu(\bold{F} - \bold{R}) + \lambda(J - 1)J\bold{F}^{-T} P(F)=FΨ=2μ(FR)+λ(J1)JFT

Note

  • σ i \sigma_i σi F \bold{F} F 的奇异值。

6.3 MPM 教程

《The Material Point Method for Simulating Continuum Materials》

6. 有限元基础

有限元法 :建立离散模型的 Galerkin 离散格式。

6.1 线性四面体(三角形)有限元法

线性四面体有限元(用于弹性)假设 形变映射 p h i phi phi 是一个仿射变换,因此 形变梯度 F \bold{F} F 在单个四面体单元内是恒定的,对单个元素来说:

x d e f o r m e d = F x r e s t + p \bold{x_{deformed}} = \bold{Fx_{rest}} + \bold{p} xdeformed=Fxrest+p

对于每个元素 e e e ,对能量密度函数求体积的积分,可以计算其弹性势能:

U ( e ) = ∫ e Ψ ( F ( x ) ) d x = V e Ψ ( F e ) U(e) = \int_e\bold{\Psi(F(x))\mathrm{d}x} = V_e\bold{\Psi(F_e)} U(e)=eΨ(F(x))dx=VeΨ(Fe)

  • 其中 形变梯度 F \bold{F} F 在元素 e e e 上是个常数 F e \bold{F_e} Fe ,即 Ψ ( F e ) \bold{\Psi(F_e)} Ψ(Fe) 也为常数,因此可以直接得到积分结果。

6.2 计算形变梯度

x d e f o r m e d = F x r e s t + p \bold{x_{deformed}} = \bold{Fx_{rest}} + \bold{p} xdeformed=Fxrest+p

在 2D 三角形元素(三维空间中是四面体元素)中,设:

  • 静止时的顶点位置: a r e s t \bold{a_{rest}} arest b r e s t \bold{b_{rest}} brest c r e s t \bold{c_{rest}} crest
  • 变形后的顶点位置: a d e f o r m e d \bold{a_{deformed}} adeformed b d e f o r m e d \bold{b_{deformed}} bdeformed c d e f o r m e d \bold{c_{deformed}} cdeformed

因为在线性三角形元素中 F \bold{F} F 是常数,则有:

a d e f o r m e d = F a r e s t + p b d e f o r m e d = F b r e s t + p c d e f o r m e d = F c r e s t + p \begin{aligned} \bold{a_{deformed}} &= \bold{Fa_{rest}} + \bold{p} \\ \bold{b_{deformed}} &= \bold{Fb_{rest}} + \bold{p} \\ \bold{c_{deformed}} &= \bold{Fc_{rest}} + \bold{p} \end{aligned} adeformedbdeformedcdeformed=Farest+p=Fbrest+p=Fcrest+p

消除 p \bold{p} p

( a d e f o r m e d − c d e f o r m e d ) = F ( a r e s t − c r e s t ) ( b d e f o r m e d − c d e f o r m e d ) = F ( b r e s t − c r e s t ) \begin{aligned} (\bold{a_{deformed}} - \bold{c_{deformed}}) &= \bold{F}(\bold{a_{rest}} - \bold{c_{rest}}) \\ (\bold{b_{deformed}} - \bold{c_{deformed}}) &= \bold{F}(\bold{b_{rest}} - \bold{c_{rest}}) \end{aligned} (adeformedcdeformed)(bdeformedcdeformed)=F(arestcrest)=F(brestcrest)

现在 F 2 × 2 \bold{F}_{2\times 2} F2×2 有四个线性约束:

B = [ a r e s t − c r e s t ∣ b r e s t − c r e s t ] − 1 D = [ a d e f o r m e d − c d e f o r m e d ∣ b d e f o r m e d − c d e f o r m e d ] F = D B \begin{aligned} \bold{B} &= [\bold{a_{rest}} - \bold{c_{rest}} | \bold{b_{rest}} - \bold{c_{rest}}]^{-1} \\ \bold{D} &= [\bold{a_{deformed}} - \bold{c_{deformed}} | \bold{b_{deformed}} - \bold{c_{deformed}}] \\ \bold{F} &= \bold{D}\bold{B} \end{aligned} BDF=[arestcrestbrestcrest]1=[adeformedcdeformedbdeformedcdeformed]=DB

其中 B \bold{B} B 在整个物理过程中是常数。因此可进行预计算。

B = ti.Matrix(dim, dim, dt=real, shape=n_elements)
vertices = ti.var(dt=ti.i32, shape=(n_elements, 3))

@ti.func
def compute_D(i):
    a = vertices[i, 0]
    b = vertices[i, 1]
    c = vertices[i, 2]
    return ti.Matrix.cols([x[b] - x[a], x[c] - x[a]])

@ti.kernel
def compute_B():
    for i in range(n_elements):
        B[i] = compute_D(i).inverse()

@ti.kernel
def compute_total_energy():
    for i in range(n_elements):
        D = compute_D(i)
        F = D @ B[i]
        ......

6.3 显式时间积分

v t + 1 , i = v t , i + Δ t f t , i m i x t + 1 , i = x t , i + Δ t v t + 1 , i \begin{aligned} \bold{v}_{t+1,i} &= \bold{v}_{t,i} + \Delta t\cfrac{\bold{f}_{t,i}}{m_i} \\ \bold{x}_{t+1,i} &= \bold{x}_{t,i} + \Delta t\bold{v}_{t+1,i} \end{aligned} vt+1,ixt+1,i=vt,i+Δtmift,i=xt,i+Δtvt+1,i

  • v t , i \bold{v}_{t,i} vt,i x t , i \bold{x}_{t,i} xt,i 存储在顶点中。

弹性势能对位置求导,结果的相反值即为顶点的受力:

f t , i = − ∂ U ∂ x i = − ∑ e ∂ U ( e ) ∂ x i = − ∑ e V e ∂ Ψ ( F e ) ∂ F e ∂ F e ∂ x i = − ∑ e V e P ( F e ) ∂ F e ∂ x i \begin{aligned} \bold{f}_{t,i} &= - \cfrac{\partial U}{\partial \bold{x}_i} \\ &= -\sum_e \cfrac{\partial U(e)}{\partial \bold{x}_i} \\ &= -\sum_e V_e \cfrac{\partial\Psi(\bold{F}_e)}{\partial\bold{F}_e} \cfrac{\partial\bold{F}_e}{\partial{\bold{x}_i}} \\ & = -\sum_e V_e \bold{P}(\bold{F}_e)\cfrac{\partial\bold{F}_e}{\partial{\bold{x}_i}} \end{aligned} ft,i=xiU=exiU(e)=eVeFeΨ(Fe)xiFe=eVeP(Fe)xiFe

@ti.kernel
def integrate():
    for p in x:
        ...... # 碰撞检测
        # 显式时间积分
        v[p] = (v[p] + ((-x.grad[p] / node_mass) + ti.Vector([0, -10])) * dt) * math.exp(dt * -6)
        x[p] += dt * v[p]
  • 其中:

v t + 1 , i = ( v t , i + f t , i + m i g m i Δ t ) e − 6 Δ t \bold{v}_{t+1,i} = \left(\bold{v}_{t,i} + \cfrac{\bold{f}_{t,i}+m_i g}{m_i} \Delta t \right) e^{-6 \Delta t} vt+1,i=(vt,i+mift,i+migΔt)e6Δt

6.4 隐式时间积分

[ I − Δ t 2 M − 1 ∂ f ∂ x ( x t ) ] v t + 1 = v t + Δ t M − 1 f ( x t ) \left[ \bold{I} - \Delta t^2 \bold{M}^{-1} \cfrac{\partial \bold{f}}{\partial \bold{x}}(\bold{x}_t) \right] \bold{v}_{t+1} = \bold{v}_t + \Delta t \bold{M}^{-1} \bold{f} (\bold{x}_t) [IΔt2M1xf(xt)]vt+1=vt+ΔtM1f(xt)

力的微分计算:

∂ f ∂ x = − ∂ 2 Ψ ∂ x 2 \cfrac{\partial \bold{f}}{\partial \bold{x}} = - \cfrac{\partial^2 \bold{\Psi}}{\partial \bold{x}^2} xf=x22Ψ

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值